Dynamic Modelling of Gas Turbines


Book Description

Whereas other books in this area stick to the theory, this book shows the reader how to apply the theory to real engines. It provides access to up-to-date perspectives in the use of a variety of modern advanced control techniques to gas turbine technology.




Combustion Instabilities in Gas Turbine Engines


Book Description

This book offers gas turbine users and manufacturers a valuable resource to help them sort through issues associated with combustion instabilities. In the last ten years, substantial efforts have been made in the industrial, governmental, and academic communities to understand the unique issues associated with combustion instabilities in low-emission gas turbines. The objective of this book is to compile these results into a series of chapters that address the various facets of the problem. The Case Studies section speaks to specific manufacturer and user experiences with combustion instabilities in the development stage and in fielded turbine engines. The book then goes on to examine The Fundamental Mechanisms, The Combustor Modeling, and Control Approaches.







Dynamic Modelling of Gas Turbines


Book Description

Whereas other books in this area stick to the theory, this book shows the reader how to apply the theory to real engines. It provides access to up-to-date perspectives in the use of a variety of modern advanced control techniques to gas turbine technology.




Gas Turbine Design, Components and System Design Integration


Book Description

This book written by a world-renowned expert with more than forty years of active gas turbine R&D experience comprehensively treats the design of gas turbine components and their integration into a complete system. Unlike many currently available gas turbine handbooks that provide the reader with an overview without in-depth treatment of the subject, the current book is concentrated on a detailed aero-thermodynamics, design and off-deign performance aspects of individual components as well as the system integration and its dynamic operation.This new book provides practicing gas turbine designers and young engineers working in the industry with design material that the manufacturers would keep proprietary. The book is also intended to provide instructors of turbomachinery courses around the world with a powerful tool to assign gas turbine components as project and individual modules that are integrated into a complete system. Quoting many statements by the gas turbine industry professionals, the young engineers graduated from the turbomachinery courses offered by the author, had the competency of engineers equivalent to three to four years of industrial experience.




Gas Turbine Design, Components and System Design Integration


Book Description

This is the second revised and enhanced edition of the book Gas Turbine Design, Components and System Integration written by a world-renowned expert with more than forty years of active gas turbine R&D experience. It comprehensively treats the design of gas turbine components and their integration into a complete system. Unlike many currently available gas turbine handbooks that provide the reader with an overview without in-depth treatment of the subject, the current book is concentrated on a detailed aero-thermodynamics, design and off-deign performance aspects of individual components as well as the system integration and its dynamic operation. This new book provides practicing gas turbine designers and young engineers working in the industry with design material that the manufacturers would keep proprietary. The book is also intended to provide instructors of turbomachinery courses around the world with a powerful tool to assign gas turbine components as project and individual modules that are integrated into a complete system. Quoting many statements by the gas turbine industry professionals, the young engineers graduated from the turbomachinery courses offered by the author, had the competency of engineers equivalent to three to four years of industrial experience.




Dynamic Modeling, Simulation and Control of Energy Generation


Book Description

This book addresses the core issues involved in the dynamic modeling, simulation and control of a selection of energy systems such as gas turbines, wind turbines, fuel cells and batteries. The principles of modeling and control could be applied to other non-convention methods of energy generation such as solar energy and wave energy. A central feature of Dynamic Modeling, Simulation and Control of Energy Generation is that it brings together diverse topics in thermodynamics, fluid mechanics, heat transfer, electro-chemistry, electrical networks and electrical machines and focuses on their applications in the field of energy generation, its control and regulation. This book will help the reader understand the methods of modelling energy systems for controller design application as well as gain a basic understanding of the processes involved in the design of control systems and regulators. It will also be a useful guide to simulation of the dynamics of energy systems and for implementing monitoring systems based on the estimation of internal system variables from measurements of observable system variables. Dynamic Modeling, Simulation and Control of Energy Generation will serve as a useful aid to designers of hybrid power generating systems involving advanced technology systems such as floating or offshore wind turbines and fuel cells. The book introduces case studies of the practical control laws for a variety of energy generation systems based on nonlinear dynamic models without relying on linearization. Also the book introduces the reader to the use nonlinear model based estimation techniques and their application to energy systems.




Industrial Gas Turbines


Book Description

Industrial Gas Turbines: Performance and Operability explains important aspects of gas turbine performance such as performance deterioration, service life and engine emissions. Traditionally, gas turbine performance has been taught from a design perspective with insufficient attention paid to the operational issues of a specific site. Operators are not always sufficiently familiar with engine performance issues to resolve operational problems and optimise performance.Industrial Gas Turbines: Performance and Operability discusses the key factors determining the performance of compressors, turbines, combustion and engine controls. An accompanying engine simulator CD illustrates gas turbine performance from the perspective of the operator, building on the concepts discussed in the text. The simulator is effectively a virtual engine and can be subjected to operating conditions that would be dangerous and damaging to an engine in real-life conditions. It also deals with issues of engine deterioration, emissions and turbine life. The combined use of text and simulators is designed to allow the reader to better understand and optimise gas turbine operation. - Discusses the key factors in determining the perfomance of compressors, turbines, combustion and engine controls - Explains important aspects of gas and turbine perfomance such as service life and engine emissions - Accompanied by CD illustrating gas turbine performance, building on the concepts discussed in the text




Combustion Noise


Book Description

November, 2008 Anna Schwarz, Johannes Janicka In the last thirty years noise emission has developed into a topic of increasing importance to society and economy. In ?elds such as air, road and rail traf?c, the control of noise emissions and development of associated noise-reduction techno- gies is a central requirement for social acceptance and economical competitiveness. The noise emission of combustion systems is a major part of the task of noise - duction. The following aspects motivate research: • Modern combustion chambers in technical combustion systems with low pol- tion exhausts are 5 - 8 dB louder compared to their predecessors. In the ope- tional state the noise pressure levels achieved can even be 10-15 dB louder. • High capacity torches in the chemical industry are usually placed at ground level because of the reasons of noise emissions instead of being placed at a height suitable for safety and security. • For airplanes the combustion emissions become a more and more important topic. The combustion instability and noise issues are one major obstacle for the introduction of green technologies as lean fuel combustion and premixed burners in aero-engines. The direct and indirect contribution of combustion noise to the overall core noise is still under discussion. However, it is clear that the core noise besides the fan tone will become an important noise source in future aero-engine designs. To further reduce the jet noise, geared ultra high bypass ratio fans are driven by only a few highly loaded turbine stages.




Propulsion and Power


Book Description

The book is written for engineers and students who wish to address the preliminary design of gas turbine engines, as well as the associated performance calculations, in a practical manner. A basic knowledge of thermodynamics and turbomachinery is a prerequisite for understanding the concepts and ideas described. The book is also intended for teachers as a source of information for lecture materials and exercises for their students. It is extensively illustrated with examples and data from real engine cycles, all of which can be reproduced with GasTurb (TM). It discusses the practical application of thermodynamic, aerodynamic and mechanical principles. The authors describe the theoretical background of the simulation elements and the relevant correlations through which they are applied, however they refrain from detailed scientific derivations.