80th Conference on Glass Problems


Book Description

The 80th Glass Problem Conference (GPC) was organized by the Kazuo Inamori School of Engineering, The New York State College of Ceramics, Alfred University, Alfred, NY 14802 and The Glass Manufacturing Industry Council (GMIC), Westerville, OH 43082. The Program Director was S. K. Sundaram, Inamori Professor of Materials Science and Engineering, Kazuo Inamori School of Engineering, The New York State College of Ceramics, Alfred University, Alfred, NY 14802. The Conference Director was Robert Weisenburger Lipetz, Executive Director, Glass Manufacturing Industry Council (GMIC), Westerville, OH 43082. The GPC Advisory Board (AB) included the Program Director, the Conference Director, and several industry representatives. The Board assembled the technical program. Donna Banks of the GMIC coordinated the events and provided support. The Conference started with a half-day plenary session followed by technical sessions. The themes and chairs of four technical sessions were as follows: Melting and Combustion Uyi Iyoha, Praxair, Inc., Peachtree City, GA, Jan Schep, Owens-Illinois, Inc., Perrysburg, OH, and Justin Wang, Guardian Industries, Auburn Hills, MI Batch, Environmental, and Modeling Phil Tucker, Johns Manville, Littleton, CO and Chris Tournour, Corning Inc., Corning, NY Refractories Larry McCloskey, Anchor Acquisition, LLC, Lancaster, OH and Eric Dirlam, Ardagh Group, Muncie, IN Sensors and Control Adam Polycn, Vitro Architectural Glass, Cheswick, PA and Glenn Neff, Glass Service USA, Inc., Stuart, FL







68th Conference on Glass Problems, Volume 29, Issue 1


Book Description

This book is a state-of-the-art collection of recent papers on glass problems as presented at the 68th Conference on Glass Problems at The Ohio State University. Topics include manufacturing, glass melters, combustion, refractories, and new developments.




60th Conference on Glass Problems


Book Description

This volume is part of the Ceramic Engineering and Science Proceeding (CESP) series. This series contains a collection of papers dealing with issues in both traditional ceramics (i.e., glass, whitewares, refractories, and porcelain enamel) and advanced ceramics. Topics covered in the area of advanced ceramic include bioceramics, nanomaterials, composites, solid oxide fuel cells, mechanical properties and structural design, advanced ceramic coatings, ceramic armor, porous ceramics, and more.




Separation Technologies for the Industries of the Future


Book Description

Separation processes—or processes that use physical, chemical, or electrical forces to isolate or concentrate selected constituents of a mixture—are essential to the chemical, petroleum refining, and materials processing industries. In this volume, an expert panel reviews the separation process needs of seven industries and identifies technologies that hold promise for meeting these needs, as well as key technologies that could enable separations. In addition, the book recommends criteria for the selection of separations research projects for the Department of Energy's Office of Industrial Technology.




Computational Fluid Dynamics in Industrial Combustion


Book Description

Although many books have been written on computational fluid dynamics (CFD) and many written on combustion, most contain very limited coverage of the combination of CFD and industrial combustion. Furthermore, most of these books are written at an advanced academic level, emphasize theory over practice, and provide little help to engineers who need to use CFD for combustion modeling. Computational Fluid Dynamics in Industrial Combustion fills this gap in the literature. Focusing on topics of interest to the practicing engineer, it codifies the many relevant books, papers, and reports written on this combined subject into a single, coherent reference. It looks at each topic from a somewhat narrow perspective to see how that topic affects modeling in industrial combustion. The editor and his team of expert authors address these topics within three main sections: Modeling Techniques-The basics of CFD modeling in combustion Industrial Applications-Specific applications of CFD in the steel, aluminum, glass, gas turbine, and petrochemical industries Advanced Techniques-Subjects rarely addressed in other texts, including design optimization, simulation, and visualization Rapid increases in computing power and significant advances in commercial CFD codes have led to a tremendous increase in the application of CFD to industrial combustion. Thorough and clearly representing the techniques and issues confronted in industry, Computational Fluid Dynamics in Industrial Combustion will help bring you quickly up to date on current methods and gain the ability to set up and solve the various types of problems you will encounter.




Encyclopedia of Glass Science, Technology, History, and Culture Two Volume Set


Book Description

This Encyclopedia begins with an introduction summarizing itsscope and content. Glassmaking; Structure of Glass, GlassPhysics,Transport Properties, Chemistry of Glass, Glass and Light,Inorganic Glass Families, Organic Glasses, Glass and theEnvironment, Historical and Economical Aspect of Glassmaking,History of Glass, Glass and Art, and outlinepossible newdevelopments and uses as presented by the best known people in thefield (C.A. Angell, for example). Sections and chapters arearranged in a logical order to ensure overall consistency and avoiduseless repetitions. All sections are introduced by a briefintroduction and attractive illustration. Newly investigatedtopics will be addresses, with the goal of ensuring that thisEncyclopedia remains a reference work for years to come.




Heat Transfer in Industrial Combustion


Book Description

Industry relies heavily on the combustion process. The already high demand for energy, primarily from combustion, is expected to continue to rapidly increase. Yet, the information is scattered and incomplete, with very little attention paid to the overall combustion system. Designed for practicing engineers, Heat Transfer in Industrial Combustion e