Gasification for Synthetic Fuel Production


Book Description

Gasification involves the conversion of carbon sources without combustion to syngas, which can be used as a fuel itself or further processed to synthetic fuels. The technology provides a potentially more efficient means of energy generation than direct combustion. This book provides an overview of gasification science and engineering and the production of synthetic fuels by gasification from a variety of feedstocks. Part one introduces gasification, reviewing the scientific basis of the process and gasification engineering. Part two then addresses gasification and synthentic fuel production processes. Finally, chapters in part three outline the different applications of gasification, with chapters on the conversion of different types of feedstock. - Examines the design of gasifiers, the preparation of feedstocks, and the economic, environmental and policy issues related to gasification - Reviews gasification processes for liquid fuel production - Outlines the different applications of gasification technology




Fischer-Tropsch Technology


Book Description

Fischer-Tropsch Technology is a unique book for its state-of-the-art approach to Fischer Tropsch (FT) technology. This book provides an explanation of the basic principles and terminology that are required to understand the application of FT technology. It also contains comprehensive references to patents and previous publications. As the first publication to focus on theory and application, it is a contemporary reference source for students studying chemistry and chemical engineering. Researchers and engineers active in the development of FT technology will also find this book an invaluable source of information. * Is the first publication to cover the theory and application for modern Fischer Tropsch technology * Contains comprehensive knowledge on all aspects relevant to the application of Fischer Tropsch technology* No other publication looks at past, present and future applications




Thermal Data for Natural and Synthetic Fuels


Book Description

"Presents 100 samples of organic substances characterized under identical conditions by thermogravimetry (TG) and differential thermal analysis (DTA) in addition to proximate analysis-providing accurate information essential in research and engineering applications related to fuel preparation. Discusses nonisothermal kinetic techniques, mathematical models, and other parameter estimation procedures that facilitate the extrapolation of results obtained under various conditions-including the Gaur and Reed method, an important advance in understanding the kinetics of thermal data!"




Gas Turbine Combustion


Book Description

Reflecting the developments in gas turbine combustion technology that have occurred in the last decade, Gas Turbine Combustion: Alternative Fuels and Emissions, Third Edition provides an up-to-date design manual and research reference on the design, manufacture, and operation of gas turbine combustors in applications ranging from aeronautical to po




Synthetic Fuels Handbook


Book Description

Capitalize on the Vast Potential of Alternative Energy Sources Such as Fuel Cells and Biofuels Synthetic Fuels Handbook is a comprehensive guide to the benefits and trade-offs of numerous alternative fuels, presenting expert analyses of the different properties, processes, and performance characteristics of each fuel. It discusses the concept systems and technology involved in the production of fuels on both industrial and individual scales. Written by internationally renowned fuels expert James G. Speight, this vital resource describes the production and properties of fuels from natural gas and natural gas hydrates...tar sand bitumen...coal...oil shale...synthesis gas...crops...wood sources...biomass...industrial and domestic waste...landfill gas...and much more. Using both U.S. and SI units, Synthetic Fuels Handbook features: Information on conventional and nonconventional fuel sources Discussion of the production of alternative fuels on both industrial and individual scales Analyses of properties and uses of gaseous, liquid, and solid fuels from different sources Comparison of properties of alternative fuels with petroleum-based fuels Discover All the Benefits and Trade-Offs of Synthetic Fuels • Fuel sources: conventional and nonconventional • Natural gas and natural gas hydrates • Petroleum and heavy oil • Tar sand bitumen • Coal • Oil shale • Synthesis gas • Crops • Wood sources • Biomass • Industrial and domestic waste • Landfill gas • Comparison of the properties and uses of gaseous fuels from different sources • Comparison of the properties and uses of liquid fuels from different sources • Comparison of the properties and uses of solid fuels from different sources




Fuel Property Estimation and Combustion Process Characterization


Book Description

Fuel Property Estimation and Combustion Process Characterization is a thorough tool book, which provides readers with the most up-to-date, valuable methodologies to efficiently and cost-effectively attain useful properties of all types of fuels and achieve combustion process characterizations for more efficient design and better operation. Through extensive experience in fuels and combustion, Kiang has developed equations and methodologies that can readily obtain reasonable properties for all types of fuels (including wastes and biomass), which enable him to provide guidance for designers and operators in the combustion field, in order to ensure the design, operation, and diagnostics of all types of combustion systems are of the highest quality and run at optimum efficiency. Written for professionals and researchers in the renewable energy, combustion, chemical, and mechanical engineering fields, the information in this book will equip readers with detailed guidance on how to reliably obtain properties of fuels quickly for the design, operation and diagnostics of combustion systems to achieve highly efficient combustion processes. - Presents models for quick estimation of fuel properties without going through elaborate, costly and time consuming sampling and laboratory testing - Offers methodologies to determine combustion process characteristics for designing and deploying combustion systems - Examines the fundamentals of combustion applied to energy systems, including thermodynamics of traditional and alternative fuels combustion - Presents a fuel property database for over 1400 fuels - Includes descriptive application of big data technology, using dual properties analysis as an example - Provides specific technical solutions for combustion, fuels and waste processing




Natural Gas Conversion V


Book Description

On January 1988, the ascertained and economically accessible reserves of Natural Gas (NG) amounted to over 144,000 billion cubic meters worldwide, corresponding to 124 billion tons of oil equivalents (comparable with the liquid oil reserves, which are estimated to be 138 billion TOE). It is hypothesized that the volume of NG reserve will continue to grow at the same rate of the last decade. Forecasts on production indicate a potential increase from about 2,000 billion cubic meters in 1990 to not more than 3,300 billion cubic meters in 2010, even in a high economic development scenario. NG consumption represents only one half of oil: 1.9 billion TOE/y as compared to 3.5 of oil. Consequently, in the future gas will exceed oil as a carbon atom source. In the future the potential for getting energetic vectors or petrochemicals from NG will continue to grow.The topics covered in Natural Gas Conversion V reflect the large global R&D effort to look for new and economic ways of NG exploitation. These range from the direct conversion of methane and light paraffins to the indirect conversion through synthesis gas to fuels and chemicals. Particularly underlined and visible are the technologies already commercially viable.These proceedings prove that mature and technologically feasible processes for natural gas conversion are already available and that new and improved catalytic approaches are currently developing, the validity and feasibility of which will soon be documented. This is an exciting area of modern catalysis, which will certainly open novel and rewarding perspectives for the chemical, energy and petrochemical industries.




Metal Oxides in Energy Technologies


Book Description

Metal Oxides in Energy Technologies provides, for the first time, a look at the wide range of energy applications of metal oxides. Topics covered include metal oxides materials and their applications in batteries, supercapacitors, fuel cells, solar cells, supercapacitors, and much more. The book is written by an experienced author of over 240 papers in peer-reviewed journals who was also been recognized as one of Thomson Reuter's "World's Most Influential Scientific Minds in 2015. This book presents a unique work that is ideal for academic researchers and engineers. - Presents an authoritative overview on metal oxides in energy technologies as written by an expert author who has published extensively in the area - Offers up-to-date coverage of a large, rapidly growing and complex literature - Focuses on applications, making it an ideal resource for those who want to apply this knowledge in industry







Biodiesel Science and Technology


Book Description

Biodiesel production is a rapidly advancing field worldwide, with biodiesel fuel increasingly being used in compression ignition (diesel) engines. Biodiesel has been extensively studied and utilised in developed countries, and it is increasingly being introduced in developing countries, especially in regions with high potential for sustainable biodiesel production.Initial sections systematically review feedstock resources and vegetable oil formulations, including the economics of vegetable oil conversion to diesel fuel, with additional coverage of emerging energy crops for biodiesel production. Further sections review the transesterification process, including chemical (catalysis) and biochemical (biocatalysis) processes, with extended coverage of industrial process technology and control methods, and standards for biodiesel fuel quality assurance. Final chapters cover the sustainability, performance and environmental issues of biodiesel production, as well as routes to improve glycerol by-product usage and the development of next-generation products.Biodiesel science and technology: From soil to oil provides a comprehensive reference to fuel engineers, researchers and academics on the technological developments involved in improving biodiesel quality and production capacity that are crucial to the future of the industry. - Evaluates biodiesel as a renewable energy source and documents global biodiesel development - The outlook for biodiesel science and technology is presented exploring the challenges faced by the global diesel industry - Reviews feedstock resources and vegetable oil formation including emerging crops and the agronomic potential of underexploited oil crops