Cometary and Solar Plasma Physics


Book Description







Physics of Solar System Plasmas


Book Description

A comprehensive introduction to the ionised gases of the solar-terrestrial environment.




Basics of the Solar Wind


Book Description

The Sun continually ejects matter into space, blowing a huge bubble of supersonic plasma. This solar wind bathes the whole solar system and shapes all planetary environments. The growth of space technology has considerably increased our knowledge of this medium. This 2007 book presents an introduction to the subject, starting with basic principles and including all the latest advances from space exploration and theory. It contains a short introduction to plasma physics and discusses the structure of the solar interior and atmosphere, the production of solar wind and its perturbations. It explains the objects of the Solar System, from dust to comets and planets, and their interaction with the solar wind. The final sections explore the astrophysical point of view. The topics are treated at various levels of difficulty both qualitatively and quantitatively. This book will appeal to graduate students and researchers in earth and atmospheric sciences, and astrophysics.




Solar System Plasma Processes


Book Description




Solar System Magnetic Fields


Book Description

In September 1984 a Summer School on Solar System Plasmas was held at Imperial College with the support of the Science and Engineering Research Council. An excellent group of lecturers was assembled to give a series of basic talks on the various aspects of the subject, aimed at Ph. D. students or researchers from related areas wanting to learn about the plasma physics of the solar system. The students were so appreciative of the lectures that it was decided to write them up as the present book. Traditionally, different areas of solar system science, such as solar and magnetospheric physics, have been studied by separate communities with little contact. However, it has become clear that many common themes cut right across these distinct topics, such as magnetohydrodynamic instabilities and waves, magnetic reconnect ion , convection, dynamo activity and particle acceleration. The plasma parameters may well be quite different in the Sun's atmosphere, a cometary tailor Jupiter's magnetosphere, but many of the basic processes are similar and it is by studying them in different environments that we come to understand them more deeply. Furthermore, direct in situ measurements of plasma properties at one point in the solar wind or the magnetosphere complement the more global view by remote sensing of a similar phenomenon at the Sun.







Evolution of Large-Scale Plasma Structures in Comets


Book Description

Cometary and solar wind data from December 1985 through April 1986 are presented for the purpose of determining the solar wind conditions associated with comet plasma tail disconnection events (DE's). The cometary data are from The International Halley Watch Atlas of Large-Scale Phenomena (Brandt, Niedner, and Rahe, 1992). In addition, we present the kinematic analysis of 4 DE's, those of Dec. 13.5 and 31.2, 1985, and Feb. 21.7 and 28.7, 1986. The circumstances of these DE's clearly illustrate the need to analyze DE's in groups. In situ solar wind measurements from IMP-8, ICE, and PVO were used to construct the variation of solar wind speed, density, and dynamic pressure during this interval. Data from these same spacecraft plus Vega-1 were used to determine the time of 48 current sheet crossings. These data were fitted to heliospheric current sheet curves extrapolated from the corona into the heliosphere in order to determine the best-fit source surface radius for each Carrington rotation. Comparison of the solar wind conditions and 16 DE's in Halley's comet (the four DE's discussed in this paper and 12 DE's in the literature) leaves little doubt that DE's are associated primarily with crossings of the heliospheric current sheet and apparently not with any other property of the solar wind. If we assume that there is a single or primary physical mechanism and that Halley's DE's are representative, efforts at simulation should concentrate on conditions at current sheet crossings. The mechanisms consistent with this result are sunward magnetic reconnection and tailward magnetic reconnection, if tailward reconnection can be triggered by the sector boundary crossing. Brandt, John C. Unspecified Center NAGW-1387...