Compact Planar Uwb Antennas for Wireless Device Applications


Book Description

This dissertation, "Compact Planar UWB Antennas for Wireless Device Applications" by Li, Liu, 劉荔, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: The thesis report presents the designs of compact planar ultra-wideband (UWB) antennas for wireless devices applications. Three main designs of UWB antennas are studied, namely, single UWB antennas, UWB multiple-input-multiple-out(MIMO)antennas, and transparent UWB antennas on the screens of mobile phones. For single UWB antennas, the designs of two compact planar monopole antennas with compact sizes of 2628 mm2and 3039.3mm2are presented. The UWB operations of the antennas are achieved using a ground slot under the feed line, offsetting the feed line and the radiator from the middle of the ground plane and smoothly transforming the feed line. Simulation and measurement show that the two antennas can achieve an ultra-wide bandwidth with approximately omnidirectional patterns. A deep notch-band in5.1-5.85 GHz is created in one of the UWB antennas by employing two pairs of meander lines (MLs), one pair being close to the feed line and the other pair along the upper edge of the ground plane. At the notch frequency, the simulated efficiency is only 4%. Three compact UWB-MIMO antennas with very compact sizes of 2640 〖mm〗 DEGREES2, 2138 〖mm〗 DEGREES2, and 2236 〖mm〗 DEGREES2 are designed. Each of them is designed using two UWB antenna elements perpendicularly or symmetrically placed. Different techniques such as using ground stubs besides the radiators, cutting inclined slots on the ground, and adding a T-shaped protruding from ground are proposed to lower mutual coupling between the two antenna elements. One of the antennas is designed to generate a notched band in 5.15-5.85 GHz using two ground strips. Simulation and measurement results show that these antennas can cover the entire UWB of 3.1-10.6GHz with mutual coupling of less than -15 dB, and envelope correlation coefficient of less than 0.1. An UWB antenna is designed using a transparent conductive film for applications on mobile phone screens. The effects of a finger touching the screen are studied. Results show that, with the radiator on the bottom side of the screen and a thin film with a thickness of 0.05 mm on the top side to separate the finger and the antenna, the effects of the finger can be minimized. In measurement of monopole antennas with small ground planes, due to the feeding cable used, there are always discrepancies between the simulated and measured results in radiation patterns, efficiencies, and gains at lower frequencies. To verify that the discrepancies in the results of these studies are indeed due to the feeding cable used in measurement, the models of the feeding cables are developed and used for simulation. Results show that, by using the cable model, the simulated and measured results in radiation patterns, efficiencies, and gains agree very well. DOI: 10.5353/th_b5334867 Subjects: Wireless communication systems - Equipment and supplies - Design and construction Ultra-wideband antennas







Compact Antennas for Wireless Communications and Terminals


Book Description

Compact Antennas for Wireless Communications and Terminals deals with compact microwave antennas and, more specifically, with the planar version of these antennas. Planar antennas are the most appropriate type of antenna in modern communication systems and more generally in all applications requiring miniaturization, integration and conformation such as in mobile phone handsets. The book is suitable for students, engineers and scientists eager to understand the principles of planar and small antennas, their design and fabrication issues, and modern aspects such as UWB antennas, reconfigurable antennas and diversity issues.




Metamaterial Based Ultra-Wideband Antennas for Portable Wireless Applications


Book Description

Antennas are essential for wireless communication systems. The size of a conventional antenna is dictated mainly by its operating frequency. With the advent of ultra-wideband systems (UWB), the size of antennas has become a critical issue in the design of portable wireless devices. Consequently, research and development of suitably small and highly compact antennas are challenging and have become an area of great interest among researchers and radio frequency (RF) design engineers. Various approaches have been reported to reduce the physical size of RF antennas including using high permittivity substrates, shorting pins, reactive components, and more recently, metamaterials (MTM) based on composite right-/left-handed transmission-lines (CRLH-TLs). MTM exhibit unique electromagnetic response that cannot be found in the nature. In this chapter, the properties of CRLH-TL are used to synthesize novel and highly compact planar UWB antennas with radiation properties suitable for wireless mobile devices and systems.




Broadband Planar Antennas


Book Description

The increasing demand for wireless communications has revolutionised the lifestyle of today’s society and one of the key components of wireless technology is antenna design. Broadband planar antennas are the newest generation of antennas boasting the attractive features required, such as broad operating bandwidth, low profile, light weight, low cost and ease of integration into arrays or Radio Frequency (RF) circuits, to make them ideal components of modern communications systems. Research into small and broadband antennas has been spurred by the rapid development of portable wireless communication devices such as cell phones, laptops and personal digital assistants. This all-encompassing volume, Broadband Planar Antennas: Design and Applications, systematically describes the techniques for all planar antennas from microstrip patch antennas, suspended plate antennas and planar inverted-L/F antennas to planar dipole antennas. Also discussed are some of the most recent outcomes such as broadband antenna issues in promising ultra-wideband applications. Clearly describes the fundamentals of planar antennas and categorises them according to their radiation characteristics Introduces the advanced progress in broadband planar antennas for modern wireless communications Includes a wealth of case studies, design guidelines, figures and tables This text is essential reading for antenna, RF and microwave engineers and manufacturers within the telecommunications industry. Its highly accessible approach will also appeal to researchers, postgraduate students and academic lecturers.




Planar Antennas


Book Description

This comprehensive reference text discusses fundamental concepts, applications, design techniques, and challenges in the field of planar antennas. The text focuses on recent advances in the field of planar antenna design and their applications in various fields of research, including space communication, mobile communication, wireless communication, and wearable applications. This resource presents planar antenna design concepts, methods, and techniques to enhance the performance parameters and applications for IoTs and device-to-device communication. The latest techniques used in antenna design, including their structures defected ground, MIMO, and fractal design, are discussed comprehensively. The text will be useful for senior undergraduate students, graduate students, and academic researchers in fields including electrical engineering, electronics, and communication engineering.




Advancement in Microstrip Antennas with Recent Applications


Book Description

The book discusses basic and advanced concepts of microstrip antennas, including design procedure and recent applications. Book topics include discussion of arrays, spectral domain, high Tc superconducting microstrip antennas, optimization, multiband, dual and circular polarization, microstrip to waveguide transitions, and improving bandwidth and resonance frequency. Antenna synthesis, materials, microstrip circuits, spectral domain, waveform evaluation, aperture coupled antenna geometry and miniaturization are further book topics. Planar UWB antennas are widely covered and new dual polarized UWB antennas are newly introduced. Design of UWB antennas with single or multi notch bands are also considered. Recent applications such as, cognitive radio, reconfigurable antennas, wearable antennas, and flexible antennas are presented. The book audience will be comprised of electrical and computer engineers and other scientists well versed in microstrip antenna technology.




Antennas for Portable Devices


Book Description

Offers a comprehensive and practical reference guide to antenna design and engineering for portable devices Antennas are often the most bulky components in many portable wireless devices such as mobile phones. Whilst the demand for ever smaller and more powerful wireless devices increases, as does the importance of designing and engineering smaller antennas to fit these devices. Antennas for Portable Devices provides a complete and cutting-edge guide to the design and engineering of small antennas for portable electronic devices such as mobile phone handsets, laptop computers, RFID (radio frequency identification), microwave thermal therapies devices, wearable devices, and UWB (ultra-wideband) based consumer devices. The book addresses practical engineering issues that antenna professionals have to deal with. It explains the immediate demands for existing systems; discusses the antenna technology for the latest and emerging applications, and gives comprehensive coverage of hot topics in the wireless industry. Issues including design considerations, engineering design, measurement setup and methodology, and practical applications are all covered in depth. Antennas for Portable Devices: Covers antennas for all modern portable wireless devices from handsets, RFID tags, laptops, wearable sensors, UWB-based wireless USB dongles and handheld microwave treatment devices Explains how to design and engineer applications for miniaturization of antenna technology, utilising practical case studies to provide the reader with an understanding of systems and design skills Links the basic antenna theory, with design methodology, and engineering design Is amply illustrated with numerous figures and data tables of antenna designs to aid understanding Features contributions from industry and research experts in antenna technology and applications This invaluable resource will provide a comprehensive overview of miniaturizing antenna technology for antenna engineers in industry, and R&D organizations, graduate students, consultants, researchers, RF professionals, technical managers, as well as practitioners working in the area of consumer electronics, RF systems, wireless communications, or bio-medical devices.




Next-Generation Antennas


Book Description

NEXT-GENERATION ANTENNAS: ADVANCES AND CHALLENGES The first book in this exciting new series, written and edited by a group of international experts in the field, this exciting new volume covers the latest advances and challenges in the next generation of antennas. Antenna design and wireless communication has recently witnessed their fastest growth period ever in history, and these trends are likely to continue for the foreseeable future. Due to recent advances in industrial applications as well as antenna, wireless communication, and 5G technology, we are witnessing a variety of developing and expanding new technologies. Compact and low-cost antennas are increasing the demand for ultra-wide bandwidth in next-generation (5G) wireless communication systems and the Internet of Things (IoT). Enabling the next generation of high-frequency communication, various methods have been introduced to achieve reliable high data rate communication links and enhance the directivity of planar antennas. 5G technology can be used in many applications, such as in smart city applications and in smartphones. This technology can satisfy the fast rise in user and traffic capacity in mobile broadband communications. Therefore, different planar antennas with intelligent beamforming capability play an important role in these areas. The purpose of this book is to present the advanced technology, developments, and challenges in antennas for next-generation antenna communication systems. This book covers advances in next-generation antenna design and application domain in all related areas. It is a detailed overview of cutting-edge developments and other emerging topics and their applications in all areas of engineering that have achieved great accuracy and performance with the help of the advancement and challenges in next-generation antennas. This outstanding new volume: Covers all the latest developments and future aspects of antenna communication Is concisely written, lucid, and comprehensive, practical application-based, with many informative graphics and schematics Will help students, researchers, as well as systems designers to understand fundamental antenna design and wireless communication Compares different approaches in antenna design




Multifunctional and Multiband Planar Antennas for Emerging Wireless Applications


Book Description

Includes designed miniaturized monopole antennas for laptop computers with dual/triple band operations, performance enhancement, wider bandwidth, and increased data rate Explores the design of equivalent circuit diagrams of the proposed antenna. Presents integration of designed antennas into laptop for the validation of desired outcome Identifies and discusses technical challenges and new results related to the design of 5G/WLAN antennas Contains graphical illustration, design steps, detail analysis of each step along with proper justification