Compactifying Moduli Spaces


Book Description

This book focusses on a large class of objects in moduli theory and provides different perspectives from which compactifications of moduli spaces may be investigated. Three contributions give an insight on particular aspects of moduli problems. In the first of them, various ways to construct and compactify moduli spaces are presented. In the second, some questions on the boundary of moduli spaces of surfaces are addressed. Finally, the theory of stable quotients is explained, which yields meaningful compactifications of moduli spaces of maps. Both advanced graduate students and researchers in algebraic geometry will find this book a valuable read.




Compactifying Moduli Spaces for Abelian Varieties


Book Description

This volume presents the construction of canonical modular compactifications of moduli spaces for polarized Abelian varieties (possibly with level structure), building on the earlier work of Alexeev, Nakamura, and Namikawa. This provides a different approach to compactifying these spaces than the more classical approach using toroical embeddings, which are not canonical. There are two main new contributions in this monograph: (1) The introduction of logarithmic geometry as understood by Fontaine, Illusie, and Kato to the study of degenerating Abelian varieties; and (2) the construction of canonical compactifications for moduli spaces with higher degree polarizations based on stack-theoretic techniques and a study of the theta group.




Compact Moduli Spaces and Vector Bundles


Book Description

This book contains the proceedings of the conference on Compact Moduli and Vector Bundles, held from October 21-24, 2010, at the University of Georgia. This book is a mix of survey papers and original research articles on two related subjects: Compact Moduli spaces of algebraic varieties, including of higher-dimensional stable varieties and pairs, and Vector Bundles on such compact moduli spaces, including the conformal block bundles. These bundles originated in the 1970s in physics; the celebrated Verlinde formula computes their ranks. Among the surveys are those that examine compact moduli spaces of surfaces of general type and others that concern the GIT constructions of log canonical models of moduli of stable curves. The original research articles include, among others, papers on a formula for the Chern classes of conformal classes of conformal block bundles on the moduli spaces of stable curves, on Looijenga's conjectures, on algebraic and tropical Brill-Noether theory, on Green's conjecture, on rigid curves on moduli of curves, and on Steiner surfaces.




The Geometry of Moduli Spaces of Sheaves


Book Description

This edition has been updated to reflect recent advances in the theory of semistable coherent sheaves and their moduli spaces. The authors review changes in the field and point the reader towards further literature. An ideal text for graduate students or mathematicians with a background in algebraic geometry.




The Seiberg-Witten Equations and Applications to the Topology of Smooth Four-Manifolds. (MN-44), Volume 44


Book Description

The recent introduction of the Seiberg-Witten invariants of smooth four-manifolds has revolutionized the study of those manifolds. The invariants are gauge-theoretic in nature and are close cousins of the much-studied SU(2)-invariants defined over fifteen years ago by Donaldson. On a practical level, the new invariants have proved to be more powerful and have led to a vast generalization of earlier results. This book is an introduction to the Seiberg-Witten invariants. The work begins with a review of the classical material on Spin c structures and their associated Dirac operators. Next comes a discussion of the Seiberg-Witten equations, which is set in the context of nonlinear elliptic operators on an appropriate infinite dimensional space of configurations. It is demonstrated that the space of solutions to these equations, called the Seiberg-Witten moduli space, is finite dimensional, and its dimension is then computed. In contrast to the SU(2)-case, the Seiberg-Witten moduli spaces are shown to be compact. The Seiberg-Witten invariant is then essentially the homology class in the space of configurations represented by the Seiberg-Witten moduli space. The last chapter gives a flavor for the applications of these new invariants by computing the invariants for most Kahler surfaces and then deriving some basic toological consequences for these surfaces.




Quasi-projective Moduli for Polarized Manifolds


Book Description

The concept of moduli goes back to B. Riemann, who shows in [68] that the isomorphism class of a Riemann surface of genus 9 ~ 2 depends on 3g - 3 parameters, which he proposes to name "moduli". A precise formulation of global moduli problems in algebraic geometry, the definition of moduli schemes or of algebraic moduli spaces for curves and for certain higher dimensional manifolds have only been given recently (A. Grothendieck, D. Mumford, see [59]), as well as solutions in some cases. It is the aim of this monograph to present methods which allow over a field of characteristic zero to construct certain moduli schemes together with an ample sheaf. Our main source of inspiration is D. Mumford's "Geometric In variant Theory". We will recall the necessary tools from his book [59] and prove the "Hilbert-Mumford Criterion" and some modified version for the stability of points under group actions. As in [78], a careful study of positivity proper ties of direct image sheaves allows to use this criterion to construct moduli as quasi-projective schemes for canonically polarized manifolds and for polarized manifolds with a semi-ample canonical sheaf.




Notes on Seiberg-Witten Theory


Book Description

After background on elliptic equations, Clifford algebras, Dirac operators, and Fredholm theory, chapters introduce solutions of the Seiberg-Witten equations and the group of gauge transformations, then look at algebraic surfaces. A final chapter presents in great detail a cut-and-paste technique for computing Seiberg-Witten invariants, covering elliptic equations on manifolds with cylindrical ends, finite energy monopoles on cylindrical manifolds, local and global properties of the moduli spaces of finite energy monopoles, and the process of reconstructing the space of monopoles on a 4-manifold decomposed into several parts by a hypersurface. Annotation copyrighted by Book News, Inc., Portland, OR.




Grassmannians, Moduli Spaces and Vector Bundles


Book Description

This collection of cutting-edge articles on vector bundles and related topics originated from a CMI workshop, held in October 2006, that brought together a community indebted to the pioneering work of P. E. Newstead, visiting the United States for the first time since the 1960s. Moduli spaces of vector bundles were then in their infancy, but are now, as demonstrated by this volume, a powerful tool in symplectic geometry, number theory, mathematical physics, and algebraic geometry. In fact, the impetus for this volume was to offer a sample of the vital convergence of techniques and fundamental progress, taking place in moduli spaces at the outset of the twenty-first century. This volume contains contributions by J. E. Andersen and N. L. Gammelgaard (Hitchin's projectively flat connection and Toeplitz operators), M. Aprodu and G. Farkas (moduli spaces), D. Arcara and A. Bertram (stability in higher dimension), L. Jeffrey (intersection cohomology), J. Kamnitzer (Langlands program), M. Lieblich (arithmetic aspects), P. E. Newstead (coherent systems), G. Pareschi and M. Popa (linear series on Abelian varieties), and M. Teixidor i Bigas (bundles over reducible curves). These articles do require a working knowledge of algebraic geometry, symplectic geometry and functional analysis, but should appeal to practitioners in a diversity of fields. No specialization should be necessary to appreciate the contributions, or possibly to be stimulated to work in the various directions opened by these path-blazing ideas; to mention a few, the Langlands program, stability criteria for vector bundles over surfaces and threefolds, linear series over abelian varieties and Brauer groups in relation to arithmetic properties of moduli spaces.




Moduli of Abelian Varieties


Book Description

Abelian varieties and their moduli are a topic of increasing importance in today`s mathematics, applications ranging from algebraic geometry and number theory to mathematical physics. This collection of 17 refereed articles originates from the third "Texel Conference" held in 1999. Leading experts discuss and study the structure of the moduli spaces of abelian varieties and related spaces, giving an excellent view of the state of the art in this field.




Degeneration of Abelian Varieties


Book Description

A new and complete treatment of semi-abelian degenerations of abelian varieties, and their application to the construction of arithmetic compactifications of Siegel moduli space, with most of the results being published for the first time. Highlights of the book include a classification of semi-abelian schemes, construction of the toroidal and the minimal compactification over the integers, heights for abelian varieties over number fields, and Eichler integrals in several variables, together with a new approach to Siegel modular forms. A valuable source of reference for researchers and graduate students interested in algebraic geometry, Shimura varieties or diophantine geometry.