Orthogonal Polynomials on the Unit Circle: Spectral theory


Book Description

Presents an overview of the theory of probability measures on the unit circle, viewed especially in terms of the orthogonal polynomials defined by those measures. This book discusses topics such as asymptotics of Toeplitz determinants (Szego's theorems), and limit theorems for the density of the zeros of orthogonal polynomials.




Orthogonal Polynomials on the Unit Circle


Book Description

This two-part volume gives a comprehensive overview of the theory of probability measures on the unit circle, viewed especially in terms of the orthogonal polynomials defined by those measures. A major theme involves the connections between the Verblunsky coefficients (the coefficients of the recurrence equation for the orthogonal polynomials) and the measures, an analog of the spectral theory of one-dimensional Schrödinger operators. Among the topics discussed along the way are the asymptotics of Toeplitz determinants (Szegő's theorems), limit theorems for the density of the zeros of orthogonal polynomials, matrix representations for multiplication by (CMV matrices), periodic Verblunsky coefficients from the point of view of meromorphic functions on hyperelliptic surfaces, and connections between the theories of orthogonal polynomials on the unit circle and on the real line. The book is suitable for graduate students and researchers interested in analysis.




Recent Trends in Orthogonal Polynomials and Approximation Theory


Book Description

This volume contains invited lectures and selected contributions from the International Workshop on Orthogonal Polynomials and Approximation Theory, held at Universidad Carlos III de Madrid on September 8-12, 2008, and which honored Guillermo Lopez Lagomasino on his 60th birthday. This book presents the state of the art in the theory of Orthogonal Polynomials and Rational Approximation with a special emphasis on their applications in random matrices, integrable systems, and numerical quadrature. New results and methods are presented in the papers as well as a careful choice of open problems, which can foster interest in research in these mathematical areas. This volume also includes a brief account of the scientific contributions by Guillermo Lopez Lagomasino.




Bounds and Asymptotics for Orthogonal Polynomials for Varying Weights


Book Description

This book establishes bounds and asymptotics under almost minimal conditions on the varying weights, and applies them to universality limits and entropy integrals. Orthogonal polynomials associated with varying weights play a key role in analyzing random matrices and other topics. This book will be of use to a wide community of mathematicians, physicists, and statisticians dealing with techniques of potential theory, orthogonal polynomials, approximation theory, as well as random matrices.




Orthogonal Rational Functions


Book Description

This book generalises the classical theory of orthogonal polynomials on the complex unit circle, or on the real line to orthogonal rational functions whose poles are among a prescribed set of complex numbers. The first part treats the case where these poles are all outside the unit disk or in the lower half plane. Classical topics such as recurrence relations, numerical quadrature, interpolation properties, Favard theorems, convergence, asymptotics, and moment problems are generalised and treated in detail. The same topics are discussed for the different situation where the poles are located on the unit circle or on the extended real line. In the last chapter, several applications are mentioned including linear prediction, Pisarenko modelling, lossless inverse scattering, and network synthesis. This theory has many applications in theoretical real and complex analysis, approximation theory, numerical analysis, system theory, and in electrical engineering.




Recent Advances in Orthogonal Polynomials, Special Functions, and Their Applications


Book Description

This volume contains the proceedings of the 11th International Symposium on Orthogonal Polynomials, Special Functions, and their Applications, held August 29-September 2, 2011, at the Universidad Carlos III de Madrid in Leganes, Spain. The papers cover asymptotic properties of polynomials on curves of the complex plane, universality behavior of sequences of orthogonal polynomials for large classes of measures and its application in random matrix theory, the Riemann-Hilbert approach in the study of Pade approximation and asymptotics of orthogonal polynomials, quantum walks and CMV matrices, spectral modifications of linear functionals and their effect on the associated orthogonal polynomials, bivariate orthogonal polynomials, and optimal Riesz and logarithmic energy distribution of points. The methods used include potential theory, boundary values of analytic functions, Riemann-Hilbert analysis, and the steepest descent method.







Walter Gautschi, Volume 2


Book Description

Walter Gautschi has written extensively on topics ranging from special functions, quadrature and orthogonal polynomials to difference and differential equations, software implementations, and the history of mathematics. He is world renowned for his pioneering work in numerical analysis and constructive orthogonal polynomials, including a definitive textbook in the former, and a monograph in the latter area. This three-volume set, Walter Gautschi: Selected Works with Commentaries, is a compilation of Gautschi’s most influential papers and includes commentaries by leading experts. The work begins with a detailed biographical section and ends with a section commemorating Walter’s prematurely deceased twin brother. This title will appeal to graduate students and researchers in numerical analysis, as well as to historians of science. Selected Works with Commentaries, Vol. 1 Numerical Conditioning Special Functions Interpolation and Approximation Selected Works with Commentaries, Vol. 2 Orthogonal Polynomials on the Real Line Orthogonal Polynomials on the Semicircle Chebyshev Quadrature Kronrod and Other Quadratures Gauss-type Quadrature Selected Works with Commentaries, Vol. 3 Linear Difference Equations Ordinary Differential Equations Software History and Biography Miscellanea Works of Werner Gautschi




Orthogonal Polynomials


Book Description

The general theory of orthogonal polynomials was developed in the late 19th century from a study of continued fractions by P. L. Chebyshev, even though special cases were introduced earlier by Legendre, Hermite, Jacobi, Laguerre, and Chebyshev himself. It was further developed by A. A. Markov, T. J. Stieltjes, and many other mathematicians. The book by Szego, originally published in 1939, is the first monograph devoted to the theory of orthogonal polynomials and its applications in many areas, including analysis, differential equations, probability and mathematical physics. Even after all the years that have passed since the book first appeared, and with many other books on the subject published since then, this classic monograph by Szego remains an indispensable resource both as a textbook and as a reference book. It can be recommended to anyone who wants to be acquainted with this central topic of mathematical analysis.





Book Description