Comparison of Several Numerical Methods for Simulation of Compressible Shear Layers


Book Description

An investigation is conducted on several numerical schemes for use in the computation of two-dimensional, spatially evolving, laminar variable-density compressible shear layers. Schemes with various temporal accuracies and arbitrary spatial accuracy for both inviscid and viscous terms are presented and analyzed. All integration schemes use explicit or compact finite-difference derivative operators. Three classes of schemes are considered: an extension of MacCormack's original second-order temporally accurate method, a new third-order variant of the schemes proposed by Rusanov and by Kutier, Lomax, and Warming (RKLW), and third- and fourth-order Runge-Kutta schemes. In each scheme, stability and formal accuracy are considered for the interior operators on the convection-diffusion equation U(sub t) + aU(sub x) = alpha U(sub xx). Accuracy is also verified on the nonlinear problem, U(sub t) + F(sub x) = 0. Numerical treatments of various orders of accuracy are chosen and evaluated for asymptotic stability. Formally accurate boundary conditions are derived for several sixth- and eighth-order central-difference schemes. Damping of high wave-number data is accomplished with explicit filters of arbitrary order. Several schemes are used to compute variable-density compressible shear layers, where regions of large gradients exist. Kennedy, Christopher A. and Carpenter, Mark H. Langley Research Center...




Direct and Large-Eddy Simulation V


Book Description

The fifth ERCOFfAC workshop 'Direct and Large-Eddy Simulation-5' (DLES-5) was held at the Munich University of Technology, August 27-29, 2003. It is part of a series of workshops that originated at the University of Surrey in 1994 with the intention to provide a forum for presentation and dis cussion of recent developments in the field of direct and large-eddy simula tion. Over the years the DLES-series has grown into a major international venue focussed on all aspects of DNS and LES, but also on hybrid methods like RANSILES coupling and detached-eddy simulation designed to provide reliable answers to technical flow problems at reasonable computational cost. DLES-5 was attended by 111 delegates from 15 countries. Its three-day pro gramme covered ten invited lectures and 63 original contributions partially pre sented in parallel sessions. The workshop was financially supported by the fol lowing companies, institutions and organizations: ANSYS Germany GmbH, AUDI AG, BMW Group, ERCOFfAC, FORTVER (Bavarian Research Asso ciation on Combustion), JM BURGERS CENTRE for Fluid Dynamics. Their help is gratefully acknowledged. The present Proceedings contain the written versions of nine invited lectures and fifty-nine selected and reviewed contributions which are organized in four parts: 1 Issues in LES modelling and numerics 2 Laminar-turbulent transition 3 Turbulent flows involving complex physical phenomena 4 Turbulent flows in complex geometries and in technical applications.




Quality and Reliability of Large-Eddy Simulations II


Book Description

The second Workshop on "Quality and Reliability of Large-Eddy Simulations", QLES2009, was held at the University of Pisa from September 9 to September 11, 2009. Its predecessor, QLES2007, was organized in 2007 in Leuven (Belgium). The focus of QLES2009 was on issues related to predicting, assessing and assuring the quality of LES. The main goal of QLES2009 was to enhance the knowledge on error sources and on their interaction in LES and to devise criteria for the prediction and optimization of simulation quality, by bringing together mathematicians, physicists and engineers and providing a platform specifically addressing these aspects for LES. Contributions were made by leading experts in the field. The present book contains the written contributions to QLES2009 and is divided into three parts, which reflect the main topics addressed at the workshop: (i) SGS modeling and discretization errors; (ii) Assessment and reduction of computational errors; (iii) Mathematical analysis and foundation for SGS modeling.




Error analysis of summation-by-parts formulations


Book Description

In this thesis we consider errors arising from finite difference operators on summation-by-parts (SBP) form, used in the discretisation of partial differential equations. The SBP operators are augmented with simultaneous-approximation-terms (SATs) to weakly impose boundary conditions. The SBP-SAT framework combines high order of accuracy with a systematic construction of provably stable boundary procedures, which renders it suitable for a wide range of problems. The first part of the thesis treats wave propagation problems discretised using SBP operators on coarse grids. Unless special care is taken, inaccurate approximations of the underlying dispersion relation materialises in the form of an incorrect propagation speed. We present a procedure for constructing SBP operators with minimal dispersion error. Experiments indicate that they outperform higher order non-optimal SBP operators for flow problems involving high frequencies and long simulation times. In the second part of the thesis, the formal order of accuracy of SBP operators near boundaries is analysed. We prove that the order in the interior of a diagonal norm based SBP operator must be at least twice that of the boundary stencil, irrespective of the grid point distribution near the boundary. This generalises the classical theory posed on uniform and conforming grids. We further show that for a common class of SBP operators, the diagonal norm defines a quadrature rule of the same order as the interior stencil. Again, this result is independent of the grid. In the final contribution if the thesis, we introduce the notion of a transmission problem to describe a general class of problems where different dynamics are coupled in time. Well-posedness and stability analyses are performed for continuous and discrete problems. A general condition is obtained that is necessary and sufficient for the transmission problem to satisfy an energy estimate. The theory provides insights into the coupling of fluid flow models, multi-block formulations, numerical filters, interpolation and multi-grid implementations.










Computation and Comparison of Efficient Turbulence Models for Aeronautics — European Research Project ETMA


Book Description

This volume contains contributions to the BRITE-EURAM 3rd Framework Programme ETMA and extended articles of the TMA-Workshop. It focusses on turbulence modelling techniques suitable to use in typical flow configurations, with emphasis on compressibility effects and inherent unsteadiness. These methodologies are applied to the Navier-Stokes equations, involving various turbulence modelling levels from algebraic to RSM. Basic turbulent flows in aeronautics are considered; mixing layers, wall-flows (flat-plate, backward-facing step, ramp, bump), and more complex configurations (bump, aerofoil). A critical assessment of the turbulence modelling performances is offered, based on previous results and on the experimental data-base of this research programme. The ETMA results figure in the data-base constituted by all partners and organized by INRIA