The Porous Medium Equation


Book Description

The Heat Equation is one of the three classical linear partial differential equations of second order that form the basis of any elementary introduction to the area of PDEs, and only recently has it come to be fairly well understood. In this monograph, aimed at research students and academics in mathematics and engineering, as well as engineering specialists, Professor Vazquez provides a systematic and comprehensive presentation of the mathematical theory of the nonlinear heat equation usually called the Porous Medium Equation (PME). This equation appears in a number of physical applications, such as to describe processes involving fluid flow, heat transfer or diffusion. Other applications have been proposed in mathematical biology, lubrication, boundary layer theory, and other fields. Each chapter contains a detailed introduction and is supplied with a section of notes, providing comments, historical notes or recommended reading, and exercises for the reader.




The Porous Medium Equation


Book Description

The Heat Equation is one of the three classical linear partial differential equations of second order that form the basis of any elementary introduction to the area of PDEs, and only recently has it come to be fairly well understood. In this monograph, aimed at research students and academics in mathematics and engineering, as well as engineering specialists, Professor Vazquez provides a systematic and comprehensive presentation of the mathematical theory of the nonlinear heatequation usually called the Porous Medium Equation (PME). This equation appears in a number of physical applications, such as to describe processes involving fluid flow, heat transfer or diffusion. Other applications have been proposed in mathematical biology, lubrication, boundary layer theory, andother fields. Each chapter contains a detailed introduction and is supplied with a section of notes, providing comments, historical notes or recommended reading, and exercises for the reader.













Geometric Sturmian Theory of Nonlinear Parabolic Equations and Applications


Book Description

Unlike the classical Sturm theorems on the zeros of solutions of second-order ODEs, Sturm's evolution zero set analysis for parabolic PDEs did not attract much attention in the 19th century, and, in fact, it was lost or forgotten for almost a century. Briefly revived by Plya in the 1930's and rediscovered in part several times since, it was not un




Handbook of Porous Media


Book Description

Handbook of Porous Media, Third Edition offers a comprehensive overview of the latest theories on flow, transport, and heat-exchange processes in porous media. It also details sophisticated porous media models which can be used to improve the accuracy of modeling in a variety of practical applications. Featuring contributions from leading experts i




Propagation of Sound in Porous Media


Book Description

This book has grown out of the research activities of the author in the fields of sound propagation in porous media and modelling of acoustic materials. It is assumed that the reader has a background of advanced calculus, including an introduction to differential equations, complex variables and matrix algebra. A prior exposure to theory of elasticity would be advantageous. Chapters 1-3 deal with sound propagation of plane waves in solids and fluids, and the topics of acoustic impedance and reflection coefficient are given a large emphasis. The topic of flow resistivity is presented in Chapter 2. Chapter 4 deals with sound propagation in porous materials having cylindrical pores. The topics of effective density, and of tortuosity, are presented. The thermal exchanges between the frame and the fluid, and the behaviour of the bulk modulus of the fluid, are described in this simple context. Chapter 5 is concerned with sound propagation in other porous materials, and the recent notions of characteristic dimensions, which describe thermal exchanges and the viscous forces at high frequencies, are introduced. In Chapter 6, the case of porous media having an elastic frame is considered in the context of Biot theory, where new topics described in Chapter 5 have been included.




Nonlinear Diffusion Equations and Their Equilibrium States, 3


Book Description

Nonlinear diffusion equations have held a prominent place in the theory of partial differential equations, both for the challenging and deep math ematical questions posed by such equations and the important role they play in many areas of science and technology. Examples of current inter est are biological and chemical pattern formation, semiconductor design, environmental problems such as solute transport in groundwater flow, phase transitions and combustion theory. Central to the theory is the equation Ut = ~cp(U) + f(u). Here ~ denotes the n-dimensional Laplacian, cp and f are given functions and the solution is defined on some domain n x [0, T] in space-time. FUn damental questions concern the existence, uniqueness and regularity of so lutions, the existence of interfaces or free boundaries, the question as to whether or not the solution can be continued for all time, the asymptotic behavior, both in time and space, and the development of singularities, for instance when the solution ceases to exist after finite time, either through extinction or through blow up.




Wicking in Porous Materials


Book Description

This reference offers information on the science and advances of wicking in porous materials. It describes various modeling approaches, traditional and modern, but maintains an emphasis on the modern methodologies. A host of internationally recognized scientists and researchers contribute chapters that describe the physics of wicking and the different approaches available for modeling wicking. Chapters cover measurement of wetting parameters such as surface tension and contact angle; the Washburn Equation; measurement of various quantities; wicking in rigid porous materials; wicking in swelling porous materials; and two-phase flow approaches to modeling wick flow.