Guide to Competitive Programming


Book Description

This invaluable textbook presents a comprehensive introduction to modern competitive programming. The text highlights how competitive programming has proven to be an excellent way to learn algorithms, by encouraging the design of algorithms that actually work, stimulating the improvement of programming and debugging skills, and reinforcing the type of thinking required to solve problems in a competitive setting. The book contains many “folklore” algorithm design tricks that are known by experienced competitive programmers, yet which have previously only been formally discussed in online forums and blog posts. Topics and features: reviews the features of the C++ programming language, and describes how to create efficient algorithms that can quickly process large data sets; discusses sorting algorithms and binary search, and examines a selection of data structures of the C++ standard library; introduces the algorithm design technique of dynamic programming, and investigates elementary graph algorithms; covers such advanced algorithm design topics as bit-parallelism and amortized analysis, and presents a focus on efficiently processing array range queries; surveys specialized algorithms for trees, and discusses the mathematical topics that are relevant in competitive programming; examines advanced graph techniques, geometric algorithms, and string techniques; describes a selection of more advanced topics, including square root algorithms and dynamic programming optimization. This easy-to-follow guide is an ideal reference for all students wishing to learn algorithms, and practice for programming contests. Knowledge of the basics of programming is assumed, but previous background in algorithm design or programming contests is not necessary. Due to the broad range of topics covered at various levels of difficulty, this book is suitable for both beginners and more experienced readers.







Competitive Programming 4 - Book 1


Book Description

This Competitive Programming book, 4th edition (CP4) is a must have for every competitive programmer. Mastering the contents of this book is a necessary (but admittedly not sufficient) condition if one wishes to take a leap forward from being just another ordinary coder to being among one of the world's finest competitive programmers. Typical readers of Book 1 (only) of CP4 would include: (1). Secondary or High School Students who are competing in the annual International Olympiad in Informatics (IOI) (including the National or Provincial Olympiads) as Book 1 covers most of the current IOI Syllabus, (2). Casual University students who are using this book as supplementary material for typical Data Structures and Algorithms courses, (3). Anyone who wants to prepare for typical fundamental data structure/algorithm part of a job interview at top IT companies. Typical readers of both Book 1 + Book 2 of CP4 would include: (1). University students who are competing in the annual International Collegiate Programming Contest (ICPC) Regional Contests (including the World Finals) as Book 2 covers much more Computer Science topics that have appeared in the ICPCs, (2). Teachers or Coaches who are looking for comprehensive training materials, (3). Anyone who loves solving problems through computer programs. There are numerous programming contests for those who are no longer eligible for ICPC, including Google CodeJam, Facebook Hacker Cup, TopCoder Open, CodeForces contest, Internet Problem Solving Contest (IPSC), etc.




Programming Challenges


Book Description

There are many distinct pleasures associated with computer programming. Craftsmanship has its quiet rewards, the satisfaction that comes from building a useful object and making it work. Excitement arrives with the flash of insight that cracks a previously intractable problem. The spiritual quest for elegance can turn the hacker into an artist. There are pleasures in parsimony, in squeezing the last drop of performance out of clever algorithms and tight coding. The games, puzzles, and challenges of problems from international programming competitions are a great way to experience these pleasures while improving your algorithmic and coding skills. This book contains over 100 problems that have appeared in previous programming contests, along with discussions of the theory and ideas necessary to attack them. Instant online grading for all of these problems is available from two WWW robot judging sites. Combining this book with a judge gives an exciting new way to challenge and improve your programming skills. This book can be used for self-study, for teaching innovative courses in algorithms and programming, and in training for international competition. The problems in this book have been selected from over 1,000 programming problems at the Universidad de Valladolid online judge. The judge has ruled on well over one million submissions from 27,000 registered users around the world to date. We have taken only the best of the best, the most fun, exciting, and interesting problems available.




Competitive Programming in Python


Book Description

Want to kill it at your job interview in the tech industry? Want to win that coding competition? Learn all the algorithmic techniques and programming skills you need from two experienced coaches, problem setters, and jurors for coding competitions. The authors highlight the versatility of each algorithm by considering a variety of problems and show how to implement algorithms in simple and efficient code. Readers can expect to master 128 algorithms in Python and discover the right way to tackle a problem and quickly implement a solution of low complexity. Classic problems like Dijkstra's shortest path algorithm and Knuth-Morris-Pratt's string matching algorithm are featured alongside lesser known data structures like Fenwick trees and Knuth's dancing links. The book provides a framework to tackle algorithmic problem solving, including: Definition, Complexity, Applications, Algorithm, Key Information, Implementation, Variants, In Practice, and Problems. Python code included in the book and on the companion website.




Genetic Programming IV


Book Description

Genetic Programming IV: Routine Human-Competitive Machine Intelligence presents the application of GP to a wide variety of problems involving automated synthesis of controllers, circuits, antennas, genetic networks, and metabolic pathways. The book describes fifteen instances where GP has created an entity that either infringes or duplicates the functionality of a previously patented 20th-century invention, six instances where it has done the same with respect to post-2000 patented inventions, two instances where GP has created a patentable new invention, and thirteen other human-competitive results. The book additionally establishes: GP now delivers routine human-competitive machine intelligence GP is an automated invention machine GP can create general solutions to problems in the form of parameterized topologies GP has delivered qualitatively more substantial results in synchrony with the relentless iteration of Moore's Law




Algorithmic Thinking


Book Description

A hands-on, problem-based introduction to building algorithms and data structures to solve problems with a computer. Algorithmic Thinking will teach you how to solve challenging programming problems and design your own algorithms. Daniel Zingaro, a master teacher, draws his examples from world-class programming competitions like USACO and IOI. You'll learn how to classify problems, choose data structures, and identify appropriate algorithms. You'll also learn how your choice of data structure, whether a hash table, heap, or tree, can affect runtime and speed up your algorithms; and how to adopt powerful strategies like recursion, dynamic programming, and binary search to solve challenging problems. Line-by-line breakdowns of the code will teach you how to use algorithms and data structures like: The breadth-first search algorithm to find the optimal way to play a board game or find the best way to translate a book Dijkstra's algorithm to determine how many mice can exit a maze or the number of fastest routes between two locations The union-find data structure to answer questions about connections in a social network or determine who are friends or enemies The heap data structure to determine the amount of money given away in a promotion The hash-table data structure to determine whether snowflakes are unique or identify compound words in a dictionary NOTE: Each problem in this book is available on a programming-judge website. You'll find the site's URL and problem ID in the description. What's better than a free correctness check?




Learn to Code by Solving Problems


Book Description

Learn to Code by Solving Problems is a practical introduction to programming using Python. It uses coding-competition challenges to teach you the mechanics of coding and how to think like a savvy programmer. Computers are capable of solving almost any problem when given the right instructions. That’s where programming comes in. This beginner’s book will have you writing Python programs right away. You’ll solve interesting problems drawn from real coding competitions and build your programming skills as you go. Every chapter presents problems from coding challenge websites, where online judges test your solutions and provide targeted feedback. As you practice using core Python features, functions, and techniques, you’ll develop a clear understanding of data structures, algorithms, and other programming basics. Bonus exercises invite you to explore new concepts on your own, and multiple-choice questions encourage you to think about how each piece of code works. You’ll learn how to: Run Python code, work with strings, and use variables Write programs that make decisions Make code more efficient with while and for loops Use Python sets, lists, and dictionaries to organize, sort, and search data Design programs using functions and top-down design Create complete-search algorithms and use Big O notation to design more efficient code By the end of the book, you’ll not only be proficient in Python, but you’ll also understand how to think through problems and tackle them with code. Programming languages come and go, but this book gives you the lasting foundation you need to start thinking like a programmer.







Bayesian Methods for Hackers


Book Description

Master Bayesian Inference through Practical Examples and Computation–Without Advanced Mathematical Analysis Bayesian methods of inference are deeply natural and extremely powerful. However, most discussions of Bayesian inference rely on intensely complex mathematical analyses and artificial examples, making it inaccessible to anyone without a strong mathematical background. Now, though, Cameron Davidson-Pilon introduces Bayesian inference from a computational perspective, bridging theory to practice–freeing you to get results using computing power. Bayesian Methods for Hackers illuminates Bayesian inference through probabilistic programming with the powerful PyMC language and the closely related Python tools NumPy, SciPy, and Matplotlib. Using this approach, you can reach effective solutions in small increments, without extensive mathematical intervention. Davidson-Pilon begins by introducing the concepts underlying Bayesian inference, comparing it with other techniques and guiding you through building and training your first Bayesian model. Next, he introduces PyMC through a series of detailed examples and intuitive explanations that have been refined after extensive user feedback. You’ll learn how to use the Markov Chain Monte Carlo algorithm, choose appropriate sample sizes and priors, work with loss functions, and apply Bayesian inference in domains ranging from finance to marketing. Once you’ve mastered these techniques, you’ll constantly turn to this guide for the working PyMC code you need to jumpstart future projects. Coverage includes • Learning the Bayesian “state of mind” and its practical implications • Understanding how computers perform Bayesian inference • Using the PyMC Python library to program Bayesian analyses • Building and debugging models with PyMC • Testing your model’s “goodness of fit” • Opening the “black box” of the Markov Chain Monte Carlo algorithm to see how and why it works • Leveraging the power of the “Law of Large Numbers” • Mastering key concepts, such as clustering, convergence, autocorrelation, and thinning • Using loss functions to measure an estimate’s weaknesses based on your goals and desired outcomes • Selecting appropriate priors and understanding how their influence changes with dataset size • Overcoming the “exploration versus exploitation” dilemma: deciding when “pretty good” is good enough • Using Bayesian inference to improve A/B testing • Solving data science problems when only small amounts of data are available Cameron Davidson-Pilon has worked in many areas of applied mathematics, from the evolutionary dynamics of genes and diseases to stochastic modeling of financial prices. His contributions to the open source community include lifelines, an implementation of survival analysis in Python. Educated at the University of Waterloo and at the Independent University of Moscow, he currently works with the online commerce leader Shopify.