Complete Second Order Linear Differential Equations in Hilbert Spaces


Book Description

Incomplete second order linear differential equations in Banach spaces as well as first order equations have become a classical part of functional analysis. This monograph is an attempt to present a unified systematic theory of second order equations y" (t) + Ay' (t) + By (t) = 0 including well-posedness of the Cauchy problem as well as the Dirichlet and Neumann problems. Exhaustive yet clear answers to all posed questions are given. Special emphasis is placed on new surprising effects arising for complete second order equations which do not take place for first order and incomplete second order equations. For this purpose, some new results in the spectral theory of pairs of operators and the boundary behavior of integral transforms have been developed. The book serves as a self-contained introductory course and a reference book on this subject for undergraduate and post- graduate students and research mathematicians in analysis. Moreover, users will welcome having a comprehensive study of the equations at hand, and it gives insight into the theory of complete second order linear differential equations in a general context - a theory which is far from being fully understood.




Second Order Partial Differential Equations in Hilbert Spaces


Book Description

State of the art treatment of a subject which has applications in mathematical physics, biology and finance. Includes discussion of applications to control theory. There are numerous notes and references that point to further reading. Coverage of some essential background material helps to make the book self contained.




Introduction to Partial Differential Equations and Hilbert Space Methods


Book Description

This volume offers an excellent undergraduate-level introduction to the main topics, methods, and applications of partial differential equations. Chapter 1 presents a full introduction to partial differential equations and Fourier series as related to applied mathematics. Chapter 2 begins with a more comprehensive look at the principal method for solving partial differential equations — the separation of variables — and then more fully develops that approach in the contexts of Hilbert space and numerical methods. Chapter 3 includes an expanded treatment of first-order systems, a short introduction to computational methods, and aspects of topical research on the partial differential equations of fluid dynamics. With over 600 problems and exercises, along with explanations, examples, and a comprehensive section of answers, hints, and solutions, this superb, easy-to-use text is ideal for a one-semester or full-year course. It will also provide the mathematically inclined layperson with a stimulating review of the subject's essentials.




Second Order Linear Differential Equations in Banach Spaces


Book Description

Second order linear differential equations in Banach spaces can be used for modelling such second order equations of mathematical physics as the wave equation, the Klein-Gordon equation, et al. In this way, a unified treatment can be given to subjects such as growth of solutions, singular perturbation of parabolic, hyperbolic and Schrödinger type initial value problems, and the like. The book covers in detail these subjects as well as the applications to each specific problem.




Elliptic Partial Differential Equations of Second Order


Book Description

From the reviews: "This is a book of interest to any having to work with differential equations, either as a reference or as a book to learn from. The authors have taken trouble to make the treatment self-contained. It (is) suitable required reading for a PhD student." --New Zealand Mathematical Society, 1985




Nonlinear Evolution and Difference Equations of Monotone Type in Hilbert Spaces


Book Description

This book is devoted to the study of non-linear evolution and difference equations of first or second order governed by maximal monotone operator. This class of abstract evolution equations contains ordinary differential equations, as well as the unification of some important partial differential equations including heat equation, wave equation, Schrodinger equation, etc. The book contains a collection of the authors' work and applications in this field, as well as those of other authors.




Differential Equations, Fourier Series, and Hilbert Spaces


Book Description

This book is intended to be used as a rather informal, and surely not complete, textbook on the subjects indicated in the title. It collects my Lecture Notes held during three academic years at the University of Siena for a one semester course on "Basic Mathematical Physics", and is organized as a short presentation of few important points on the arguments indicated in the title. It aims at completing the students' basic knowledge on Ordinary Differential Equations (ODE) - dealing in particular with those of higher order - and at providing an elementary presentation of the Partial Differential Equations (PDE) of Mathematical Physics, by means of the classical methods of separation of variables and Fourier series. For a reasonable and consistent discussion of the latter argument, some elementary results on Hilbert spaces and series expansion in othonormal vectors are treated with some detail in Chapter 2. Prerequisites for a satisfactory reading of the present Notes are not only a course of Calculus for functions of one or several variables, but also a course in Mathematical Analysis where - among others - some basic knowledge of the topology of normed spaces is supposed to be included. For the reader's convenience some notions in this context are explicitly recalled here and there, and in particular as an Appendix in Section 1.4. An excellent reference for this general background material is W. Rudin's classic Principles of Mathematical Analysis. On the other hand, a complete discussion of the results on ODE and PDE that are here just sketched are to be found in other books, specifically and more deeply devoted to these subjects, some of which are listed in the Bibliography. In conclusion and in brief, my hope is that the present Notes can serve as a second quick reading on the theme of ODE, and as a first introductory reading on Fourier series, Hilbert spaces, and PDE




Introduction To Second Order Partial Differential Equations, An: Classical And Variational Solutions


Book Description

The book extensively introduces classical and variational partial differential equations (PDEs) to graduate and post-graduate students in Mathematics. The topics, even the most delicate, are presented in a detailed way. The book consists of two parts which focus on second order linear PDEs. Part I gives an overview of classical PDEs, that is, equations which admit strong solutions, verifying the equations pointwise. Classical solutions of the Laplace, heat, and wave equations are provided. Part II deals with variational PDEs, where weak (variational) solutions are considered. They are defined by variational formulations of the equations, based on Sobolev spaces. A comprehensive and detailed presentation of these spaces is given. Examples of variational elliptic, parabolic, and hyperbolic problems with different boundary conditions are discussed.




Differential Equations and Applications, Volume 4


Book Description

The aim of this volume is to introduce new topics on the areas of difference, differential, integrodifferential and integral equations, evolution equations, control and optimisation theory, dynamic system theory, queuing theory and electromagnetism and their applications.