Completeness Theorems and Characteristic Matrix Functions


Book Description

This monograph presents necessary and sufficient conditions for completeness of the linear span of eigenvectors and generalized eigenvectors of operators that admit a characteristic matrix function in a Banach space setting. Classical conditions for completeness based on the theory of entire functions are further developed for this specific class of operators. The classes of bounded operators that are investigated include trace class and Hilbert-Schmidt operators, finite rank perturbations of Volterra operators, infinite Leslie operators, discrete semi-separable operators, integral operators with semi-separable kernels, and period maps corresponding to delay differential equations. The classes of unbounded operators that are investigated appear in a natural way in the study of infinite dimensional dynamical systems such as mixed type functional differential equations, age-dependent population dynamics, and in the analysis of the Markov semigroup connected to the recently introduced zig-zag process.




Operator Theory, Functional Analysis and Applications


Book Description

This book presents 30 articles on the topic areas discussed at the 30th “International Workshop on Operator Theory and its Applications”, held in Lisbon in July 2019. The contributions include both expository essays and original research papers reflecting recent advances in the traditional IWOTA areas and emerging adjacent fields, as well as the applications of Operator Theory and Functional Analysis. The topics range from C*–algebras and Banach *–algebras, Sturm-Liouville theory, integrable systems, dilation theory, frame theory, Toeplitz, Hankel, and singular integral operators, to questions from lattice, group and matrix theories, complex analysis, harmonic analysis, and function spaces. Given its scope, the book is chiefly intended for researchers and graduate students in the areas of Operator Theory, Functional Analysis, their applications and adjacent fields.




The Diversity and Beauty of Applied Operator Theory


Book Description

This book presents 29 invited articles written by participants of the International Workshop on Operator Theory and its Applications held in Chemnitz in 2017. The contributions include both expository essays and original research papers illustrating the diversity and beauty of insights gained by applying operator theory to concrete problems. The topics range from control theory, frame theory, Toeplitz and singular integral operators, Schrödinger, Dirac, and Kortweg-de Vries operators, Fourier integral operator zeta-functions, C*-algebras and Hilbert C*-modules to questions from harmonic analysis, Monte Carlo integration, Fibonacci Hamiltonians, and many more. The book offers researchers in operator theory open problems from applications that might stimulate their work and shows those from various applied fields, such as physics, engineering, or numerical mathematics how to use the potential of operator theory to tackle interesting practical problems.




Controlling Delayed Dynamics


Book Description

This book gathers contributions on analytical, numerical, and application aspects of time-delay systems, under the paradigm of control theory, and discusses recent advances in these different contexts, also highlighting the interdisciplinary connections. The book will serve as a useful tool for graduate students and researchers in the fields of dynamical systems, automatic control, numerical methods, and functional analysis.




Encyclopaedia of Mathematics


Book Description

This ENCYCLOPAEDIA OF MATHEMATICS aims to be a reference work for all parts of mathe matics. It is a translation with updates and editorial comments of the Soviet Mathematical Encyclopaedia published by 'Soviet Encyclopaedia Publishing House' in five volumes in 1977-1985. The annotated translation consists of ten volumes including a special index volume. There are three kinds of articles in this ENCYCLOPAEDIA. First of all there are survey-type articles dealing with the various main directions in mathematics (where a rather fine subdivi sion has been used). The main requirement for these articles has been that they should give a reasonably complete up-to-date account of the current state of affairs in these areas and that they should be maximally accessible. On the whole, these articles should be understandable to mathematics students in their first specialization years, to graduates from other mathematical areas and, depending on the specific subject, to specialists in other domains of science, en gineers and teachers of mathematics. These articles treat their material at a fairly general level and aim to give an idea of the kind of problems, techniques and concepts involved in the area in question. They also contain background and motivation rather than precise statements of precise theorems with detailed definitions and technical details on how to carry out proofs and constructions. The second kind of article, of medium length, contains more detailed concrete problems, results and techniques.




Mathematical Thought From Ancient to Modern Times, Volume 3


Book Description

This comprehensive history traces the development of mathematical ideas and the careers of the men responsible for them. Volume 1 looks at the disciplines origins in Babylon and Egypt, the creation of geometry and trigonometry by the Greeks, and the role of mathematics in the medieval and early modern periods. Volume 2 focuses on calculus, the rise of analysis in the 19th century, and the number theories of Dedekind and Dirichlet. The concluding volume covers the revival of projective geometry, the emergence of abstract algebra, the beginnings of topology, and the influence of Godel on recent mathematical study.




Mathematical Thought From Ancient to Modern Times, Volume 1


Book Description

The major creations and developments in mathematics from the beginnings in Babylonia and Egypt through the first few decades of the twentieth century are presented with clarity and precision in this comprehensive historical study.




Mathematical Thought from Ancient to Modern Times: Volume 2


Book Description

Traces the development of mathematics from its beginnings in Babylonia and ancient Egypt to the work of Riemann and Godel in modern times.




Theory and Applications of Volterra Operators in Hilbert Space


Book Description

An abstract Volterra operator is, roughly speaking, a compact operator in a Hilbert space whose spectrum consists of a single point $\lambda=0$. The theory of abstract Volterra operators, significantly developed by the authors of the book and their collaborators, represents an important part of the general theory of non-self-adjoint operators in Hilbert spaces. The book, intended for all mathematicians interested in functional analysis and its applications, discusses the main ideas and results of the theory of abstract Volterra operators. Of particular interest to analysts and specialists in differential equations are the results about analytic models of abstract Volterra operators and applications to boundary value problems for ordinary differential equations.




Completeness and Reduction in Algebraic Complexity Theory


Book Description

This is a thorough and comprehensive treatment of the theory of NP-completeness in the framework of algebraic complexity theory. Coverage includes Valiant's algebraic theory of NP-completeness; interrelations with the classical theory as well as the Blum-Shub-Smale model of computation, questions of structural complexity; fast evaluation of representations of general linear groups; and complexity of immanants.