Complex Analysis for Mathematics and Engineering


Book Description

This text provides a balance between pure (theoretical) and applied aspects of complex analysis. The many applications of complex analysis to science and engineering are described, and this third edition contains a historical introduction depicting the origins of complex numbers.




Fundamentals of Complex Analysis with Applications to Engineering and Science (Classic Version)


Book Description

This title is part of the Pearson Modern Classics series. Pearson Modern Classics are acclaimed titles at a value price. Please visit www.pearsonhighered.com/math-classics-series for a complete list of titles. This is the best seller in this market. It provides a comprehensive introduction to complex variable theory and its applications to current engineering problems. It is designed to make the fundamentals of the subject more easily accessible to students who have little inclination to wade through the rigors of the axiomatic approach. Modeled after standard calculus books--both in level of exposition and layout--it incorporates physical applications throughout the presentation, so that the mathematical methodology appears less sterile to engineering students.




Complex Analysis for Mathematics and Engineering


Book Description

Complex Analysis for Mathematics and Engineering, Fifth Edition is intended for undergraduate students majoring in mathematics, physics, or engineering. The authors strike a balance between the pure and applied aspects of complex analysis, and present concepts in a clear writing style that is appropriate for students at the junior/senior undergraduate level. Through its comprehensive, student-friendly presentation and numerous applications, the Fifth Edition of this classic text allows students to work through even the most difficult proofs with ease. Believing that mathematicians, engineers, and scientists should be exposed to a careful presentation of mathematics, the authors devote attention to important topics such as ensuring that required assumptions are met before using a theorem, confirming that algebraic operations are valid, and checking that formulas are not blindly applied. A new chapter on z-transforms and applications provides students with a current look at Digital Filter Design and Signal Processing. Key Features: New! Chapter 9 is new to this edition and is dedicated to z-transforms, the math needed for engineering applications such as Digital Filter Design and Signal Processing. The text models good proofs and guides students through the details. Exercise sets offer a wide variety of choices for computational skills, theoretical understanding, and applications. Applications show how complex analysis is used in science and engineering. Illustrations include the z-transform, ideal fluid flow, steady-state temperatures, and electrostatics. Coverage of Julia and Mandelbrot sets. Interactive website includes bibliographical library resources, undergraduate research, and complementary software using F(Z)[Trademark], Mathematica[Trademark], and Maple[Trademark]. Solutions to odd-numbered problem assignments are included as an appendix. Book jacket.




Complex Variables for Scientists and Engineers


Book Description

Outstanding undergraduate text provides a thorough understanding of fundamentals and creates the basis for higher-level courses. Numerous examples and extensive exercise sections of varying difficulty, plus answers to selected exercises. 1990 edition.




Complex Analysis with Applications in Science and Engineering


Book Description

The Second Edition of this acclaimed text helps you apply theory to real-world applications in mathematics, physics, and engineering. It easily guides you through complex analysis with its excellent coverage of topics such as series, residues, and the evaluation of integrals; multi-valued functions; conformal mapping; dispersion relations; and analytic continuation. Worked examples plus a large number of assigned problems help you understand how to apply complex concepts and build your own skills by putting them into practice. This edition features many new problems, revised sections, and an entirely new chapter on analytic continuation.




Complex Analysis with MATHEMATICA®


Book Description

This book presents a way of learning complex analysis, using Mathematica. Includes CD with electronic version of the book.




Introductory Complex Analysis


Book Description

Shorter version of Markushevich's Theory of Functions of a Complex Variable, appropriate for advanced undergraduate and graduate courses in complex analysis. More than 300 problems, some with hints and answers. 1967 edition.




Visual Complex Analysis


Book Description

This radical first course on complex analysis brings a beautiful and powerful subject to life by consistently using geometry (not calculation) as the means of explanation. Aimed at undergraduate students in mathematics, physics, and engineering, the book's intuitive explanations, lack of advanced prerequisites, and consciously user-friendly prose style will help students to master the subject more readily than was previously possible. The key to this is the book's use of new geometric arguments in place of the standard calculational ones. These geometric arguments are communicated with the aid of hundreds of diagrams of a standard seldom encountered in mathematical works. A new approach to a classical topic, this work will be of interest to students in mathematics, physics, and engineering, as well as to professionals in these fields.




A Collection of Problems on Complex Analysis


Book Description

Over 1500 problems on theory of functions of the complex variable; coverage of nearly every branch of classical function theory. Topics include conformal mappings, integrals and power series, Laurent series, parametric integrals, integrals of the Cauchy type, analytic continuation, Riemann surfaces, much more. Answers and solutions at end of text. Bibliographical references. 1965 edition.




Mathematical Analysis for Engineers


Book Description

This book follows an advanced course in analysis (vector analysis, complex analysis and Fourier analysis) for engineering students, but can also be useful, as a complement to a more theoretical course, to mathematics and physics students. The first three parts of the book represent the theoretical aspect and are independent of each other. The fourth part gives detailed solutions to all exercises that are proposed in the first three parts. Foreword Foreword (71 KB) Sample Chapter(s) Chapter 1: Differential Operators of Mathematical Physics (272 KB) Chapter 9: Holomorphic functions and Cauchy–Riemann equations (248 KB) Chapter 14: Fourier series (281 KB) Request Inspection Copy Contents: Vector Analysis:Differential Operators of Mathematical PhysicsLine IntegralsGradient Vector FieldsGreen TheoremSurface IntegralsDivergence TheoremStokes TheoremAppendixComplex Analysis:Holomorphic Functions and Cauchy–Riemann EquationsComplex IntegrationLaurent SeriesResidue Theorem and ApplicationsConformal MappingFourier Analysis:Fourier SeriesFourier TransformLaplace TransformApplications to Ordinary Differential EquationsApplications to Partial Differential EquationsSolutions to the Exercises:Differential Operators of Mathematical PhysicsLine IntegralsGradient Vector FieldsGreen TheoremSurface IntegralsDivergence TheoremStokes TheoremHolomorphic Functions and Cauchy–Riemann EquationsComplex IntegrationLaurent SeriesResidue Theorem and ApplicationsConformal MappingFourier SeriesFourier TransformLaplace TransformApplications to Ordinary Differential EquationsApplications to Partial Differential Equations Readership: Undergraduate students in analysis & differential equations, complex analysis, civil, electrical and mechanical engineering.