Complex and Hypercomplex Analytic Signals


Book Description

Based on the bestselling Artech House classic title, Hilbert Transforms Signal Processing, this comprehensive new resource introduces complex and hypercomplex analytic signals and their applications. Professionals find in-depth explanations of the theory of multidimensional complex and hypercomplex signals illustrated with numerous examples and followed by practical applications. The survey of chosen hypercomplex algebras and the orthants of the n-dimensional Cartesian space and single-orthant operators are explored. This book also covers topics including, the polar representation of analytic signals, quasi-analytic signals, the space-frequency of n-D complex and hypercomplex signals as well as the causality of signals.




Quaternionic Integral Transforms


Book Description

This book presents a machine-generated literature overview of quaternion integral transforms from select papers published by Springer Nature, which have been organized and introduced by the book’s editor. Each chapter presents summaries of predefined themes and provides the reader with a basis for further exploration of the topic. As one of the experimental projects initiated by Springer Nature for AI book content generation, this book shows the latest developments in the field. It will be a useful reference for students and researchers who are interested in exploring the latest developments in quaternion integral transforms.




Quaternion and Clifford Fourier Transforms and Wavelets


Book Description

Quaternion and Clifford Fourier and wavelet transformations generalize the classical theory to higher dimensions and are becoming increasingly important in diverse areas of mathematics, physics, computer science and engineering. This edited volume presents the state of the art in these hypercomplex transformations. The Clifford algebras unify Hamilton’s quaternions with Grassmann algebra. A Clifford algebra is a complete algebra of a vector space and all its subspaces including the measurement of volumes and dihedral angles between any pair of subspaces. Quaternion and Clifford algebras permit the systematic generalization of many known concepts. This book provides comprehensive insights into current developments and applications including their performance and evaluation. Mathematically, it indicates where further investigation is required. For instance, attention is drawn to the matrix isomorphisms for hypercomplex algebras, which will help readers to see that software implementations are within our grasp. It also contributes to a growing unification of ideas and notation across the expanding field of hypercomplex transforms and wavelets. The first chapter provides a historical background and an overview of the relevant literature, and shows how the contributions that follow relate to each other and to prior work. The book will be a valuable resource for graduate students as well as for scientists and engineers.




Empowering Novel Geometric Algebra for Graphics and Engineering


Book Description

This book constitutes the proceedings of the Workshop Empowering Novel Geometric Algebra for Graphics and Engineering, ENGAGE 2022, held in conjunction with Computer Graphics International conference, CGI 2022, which took place virtually, in September 2022. The 10 full papers included in this volume were carefully reviewed and selected from 12 submissions. The workshop focused specifically on important aspects of geometric algebra including algebraic foundations, digitized transformations, orientation, conic fitting, protein modelling, digital twinning, and multidimensional signal processing.




Signal Digitization and Reconstruction in Digital Radios


Book Description

This comprehensive resource provides the latest information on digitization and reconstruction (D&R) of analog signals in digital radios. Readers learn how to conduct comprehensive analysis, concisely describe the major signal processing procedures carried out in the radios, and demonstrate the dependence of these procedures on the quality of D&R. The book presents and analyzes the most promising and theoretically sound ways to improve the characteristics of D&R circuits and illustrate the influence of these improvements on the capabilities of digital radios. The book is intended to bridge the gap that exists between theorists and practical engineers developing D&R techniques by introducing new signal transmission and reception methods that can effectively utilize the unique capabilities offered by novel digitization and reconstruction techniques.




Progress in Industrial Mathematics at ECMI 2018


Book Description

This book explores mathematics in a wide variety of applications, ranging from problems in electronics, energy and the environment, to mechanics and mechatronics. The book gathers 81 contributions submitted to the 20th European Conference on Mathematics for Industry, ECMI 2018, which was held in Budapest, Hungary in June 2018. The application areas include: Applied Physics, Biology and Medicine, Cybersecurity, Data Science, Economics, Finance and Insurance, Energy, Production Systems, Social Challenges, and Vehicles and Transportation. In turn, the mathematical technologies discussed include: Combinatorial Optimization, Cooperative Games, Delay Differential Equations, Finite Elements, Hamilton-Jacobi Equations, Impulsive Control, Information Theory and Statistics, Inverse Problems, Machine Learning, Point Processes, Reaction-Diffusion Equations, Risk Processes, Scheduling Theory, Semidefinite Programming, Stochastic Approximation, Spatial Processes, System Identification, and Wavelets. The goal of the European Consortium for Mathematics in Industry (ECMI) conference series is to promote interaction between academia and industry, leading to innovations in both fields. These events have attracted leading experts from business, science and academia, and have promoted the application of novel mathematical technologies to industry. They have also encouraged industrial sectors to share challenging problems where mathematicians can provide fresh insights and perspectives. Lastly, the ECMI conferences are one of the main forums in which significant advances in industrial mathematics are presented, bringing together prominent figures from business, science and academia to promote the use of innovative mathematics in industry.







Hypercomplex Analysis: New Perspectives and Applications


Book Description

Hypercomplex analysis is the extension of complex analysis to higher dimensions where the concept of a holomorphic function is substituted by the concept of a monogenic function. In recent decades this theory has come to the forefront of higher dimensional analysis. There are several approaches to this: quaternionic analysis which merely uses quaternions, Clifford analysis which relies on Clifford algebras, and generalizations of complex variables to higher dimensions such as split-complex variables. This book includes a selection of papers presented at the session on quaternionic and hypercomplex analysis at the ISAAC conference 2013 in Krakow, Poland. The topics covered represent new perspectives and current trends in hypercomplex analysis and applications to mathematical physics, image analysis and processing, and mechanics.




Bridging Circuits and Fields


Book Description

Energy and power are fundamental concepts in electromagnetism and circuit theory, as well as in optics, signal processing, power engineering, electrical machines, and power electronics. However, in crossing the disciplinary borders, we encounter understanding difficulties due to (1) the many possible mathematical representations of the same physical objects, and (2) the many possible physical interpretations of the same mathematical entities. The monograph proposes a quantum and a relativistic approach to electromagnetic power theory that is based on recent advances in physics and mathematics. The book takes a fresh look at old debates related to the significance of the Poynting theorem and the interpretation of reactive power. Reformulated in the mathematical language of geometric algebra, the new expression of electromagnetic power reflects the laws of conservation of energy-momentum in fields and circuits. The monograph offers a mathematically consistent and a physically coherent interpretation of the power concept and of the mechanism of power transmission at the subatomic (mesoscopic) level. The monograph proves (paraphrasing Heaviside) that there is no finality in the development of a vibrant discipline: power theory.




Local Structure Tensor for Multidimensional Signal Processing


Book Description

Feature extraction and, particularly, orientation estimation of multidimensional images is of paramount importance for the Image Processing and Computer Vision communities. This dissertation focuses on this topic; specifically, we deal with the problem of local structure tensor (LST) estimation, as a mean of characterizing the local behavior of a multidimensional signal. The LST can be seen as a measure of the uncertainty of a multidimensional signal with respect to a given orientation. LST estimation can be achieved by estimating the local energy of a signal in different orientations. Then, the LST is computed as a linear combination of the local energy for each orientation with a tensor basis whose elements are calculated for each orientation. This kind of methods for the estimation of the LST are based on quadrature filters to obtain the local energy of the signal. While the LST based on quadrature filters is well defined for signals that vary locally only in one orientation (simple signals), the estimation method fails with complex signals, i.e. signals that consist of several differently-oriented simple signals. In this dissertation, an analytical study of the distortions of the tensor eigenvalues due to such complex neighborhoods is carried out. From this analytical study, two constructive methods are proposed for the estimation of the LST. The first method is based on a maximum likelihood estimation of the quadrature filter outputs. The second method uses a measure of phase consistency based on generalized quadrature filters which are formally derived from an extension of the analytic signal to multidimensional signals known as the monogenic signal. The interpretation of a multidimensional image as a function graph, i.e. a Riemannian manifold, instead of just intensity variations on the Euclidean space, has important implications that are exploited in this dissertation. Image processing tasks can then be performed by solving partial differential equations on the Riemannian manifold. In this dissertation, Riemannian geometry is used to study the evolution of fronts under mean curvature flow on a Riemannian manifold using a level set framework. For our purposes, the Riemannian manifold is defined by the induced metric of the image that is related to the LST. The Riemannian mean curvature flow is the theoretical basis for the definition of a level set segmentation method. The methods proposed in this dissertation are applied to two medical image applications. The first consists in a freehand 3D ultrasound reconstruction technique that uses the LST to perform an adaptive interpolation based on normalized convolution. Our results show that our method outperforms traditional technique for this interpolation problem. The second application uses the level set method based on Riemannian mean curvature flow to segment anatomical structures in dataset from magnetic resonance imaging (MRI), computed tomography (CT) and ultrasound (US). This novel method reveals as a feasible approach to medical image segmentation.