Percolation Theory for Flow in Porous Media


Book Description

Why would we wish to start a 2nd edition of “Percolation theory for ?ow in porous media” only two years after the ?rst one was ?nished? There are essentially three reasons: 1) Reviews in the soil physics community have pointed out that the introductory material on percolation theory could have been more accessible. Our additional experience in teaching this material led us to believe that we could improve this aspect of the book. In the context of rewriting the ?rst chapter, however, we also expanded the discussion of Bethe lattices and their relevance for “classical” - ponents of percolation theory, thus giving more of a basis for the discussion of the relevance of hyperscaling. This addition, though it will not tend to make the book more accessible to hydrologists, was useful in making it a more complete reference, and these sections have been marked as being possible to omit in a ?rst reading. It also forced a division of the ?rst chapter into two. We hope that physicists without a background in percolation theory will now also ?nd the - troductory material somewhat more satisfactory. 2) We have done considerable further work on problems of electrical conductivity, thermal conductivity, and electromechanical coupling.




Percolation


Book Description

Percolation theory is the study of an idealized random medium in two or more dimensions. The emphasis of this book is upon core mathematical material and the presentation of the shortest and most accessible proofs. Much new material appears in this second edition including dynamic and static renormalization, strict inequalities between critical points, a sketch of the lace expansion, and several essays on related fields and applications.




Applications of Percolation Theory


Book Description

The first edition of this book was published in 1994. Since then considerable progress has been made in both theoretical developments of percolation theory, and in its applications. The 2nd edition of this book is a response to such developments. Not only have all of the chapters of the 1st edition been completely rewritten, reorganized, and updated all the way to 2022, but also 8 new chapters have been added that describe extensive new applications, including biological materials, networks and graphs, directed percolation, earthquakes, geochemical processes, and large-scale real world problems, from spread of technology to ad-hoc mobile networks.




Modelling of Flow and Transport in Fractal Porous Media


Book Description

This important resource explores recent theoretical advances and modelling on fluids transport in fractal porous systems and presents a systematic understanding of the characterization of complex microstructure and transport mechanism in fractal porous media. Modelling of Flow and Transport in Fractal Porous Media shows how fractal theory and technology, combined with other modern experiments and numerical simulation methods, will assist researchers and practitioners in modelling of transport properties of fractal porous media, such as fluid flow, heat and mass transfer, mechanical characteristics, and electrical conductivity. - Presents the main methods and technologies for transport characterization of fractal porous media, including soils, reservoirs and artificial materials - Provides the most recent theoretical advances in modelling of fractal porous media, including gas and vapor transport in fibrous materials, nonlinear seepage flow in hydrocarbon reservoirs, mass transfer of porous nanofibers, and fractal mechanics of unsaturated soils - Includes multidisciplinary examples of applications of fractal theory to aid researchers and practitioners in characterizing various porous media structures




Wave Scattering in Complex Media: From Theory to Applications


Book Description

A collection of lectures on a variety of modern subjects in wave scattering, including fundamental issues in mesoscopic physics and radiative transfer, recent hot topics such as random lasers, liquid crystals, lefthanded materials and time-reversal, as well as modern applications in imaging and communication. There is a strong emphasis on the interdisciplinary aspects of wave propagation, including light and microwaves, acoustic and elastic waves, propagating in a variety of "complex" materials (liquid crystals, media with gain, natural media, magneto-optical media, photonic and phononic materials, etc.). It addresses many different items in contemporary research: mesoscopic fluctuations, localization, radiative transfer, symmetry aspects, and time-reversal. It also discusses new (potential) applications in telecommunication, soft matter and imaging.




Percolation Theory In Reservoir Engineering


Book Description

This book aims to develop the ideas from fundamentals of percolation theory to practical reservoir engineering applications. Through a focus on field scale applications of percolation concepts to reservoir engineering problems, it offers an approximation method to determine many important reservoir parameters, such as effective permeability and reservoir connectivity and the physical analysis of some reservoir engineering properties. Starring with the concept of percolation theory, it then develops into methods to simple geological systems like sand-bodies and fractures. The accuracy and efficiency of the percolation concept for these is explained and further extended to more complex realistic models.Percolation Theory in Reservoir Engineering primarily focuses on larger reservoir scale flow and demonstrates methods that can be used to estimate large scale properties and their uncertainty, crucial for major development and investment decisions in hydrocarbon recovery.




Applications Of Percolation Theory


Book Description

Over the past two decades percolation theory has been used to explain and model a wide variety of phenomena that are of industrial and scientific importance. Examples include characterization of porous materials and reservoir rocks, fracture patterns and earthquakes in rocks, calculation of effective transport properties of porous media permeability, conductivity, diffusivity, etc., groundwater flow, polymerization and gelation, biological evolution, galactic formation in the universe, spread of knowledge, and many others. Most of such applications have resulted in qualitative as well as quantitative predictions for the system of interest. This book attempts to describe in simple terms some of these applications, outline the results obtained so far, and provide further references for future reading.




Waves in Complex Media


Book Description

An interdisciplinary introduction to the structural and scattering properties of complex photonic media, focusing on deterministic aperiodic structures and their conceptual roots in geometry and number theory. An essential tool for students at the graduate or advanced undergraduate level.




Achievements, History and Challenges in Geophysics


Book Description

Over the last six decades, the field of geophysics has experienced rapid development. Seismic methods, magnetic studies, hydrology and atmospheric sciences have expanded thanks to a boom in the computer sciences and measurement techniques. The frontiers of geophysics have also expanded, now including research on the polar areas, both Arctic and Antarctic. All these events are clearly reflected in the 60-year-long history of the Institute of Geophysics, Polish Academy of Sciences. This volume describes the most prominent achievements, the history of research and also the future potential of the Institute of Geophysics PAS. It describes measurements in various projects, methods of interpreting scientific data, and last but not least the people who have driven this research in many scientific projects.




Explosive Percolation in Random Networks


Book Description

This thesis is devoted to the study of the Bohman-Frieze-Wormald percolation model, which exhibits a discontinuous transition at the critical threshold, while the phase transitions in random networks are originally considered to be robust continuous phase transitions. The underlying mechanism that leads to the discontinuous transition in this model is carefully analyzed and many interesting critical behaviors, including multiple giant components, multiple phase transitions, and unstable giant components are revealed. These findings should also be valuable with regard to applications in other disciplines such as physics, chemistry and biology.