COMPLEX SYSTEM WITH FLOWS AND SYNCHRONIZATION


Book Description

Is our mathematical theory can already be used for understanding the reality of all things in the world? This is a simple but essential question on the developing direction of mathematics, and it’s answer is not positive.




Energy Transmission and Synchronization in Complex Networks


Book Description

This work tackles the problems of understanding how energy is transmitted and distributed in power-grids as well as in determining how robust this transmission and distribution is when modifications to the grid or power occur. The most important outcome is the derivation of explicit relationships between the structure of the grid, the optimal transmission and distribution of energy, and the grid’s collective behavior (namely, the synchronous generation of power). These relationships are extremely relevant for the design of resilient power-grid models. To allow the reader to apply these results to other complex systems, the thesis includes a review of relevant aspects of network theory, spectral theory, and novel analytical calculations to predict the existence and stability of periodic collective behavior in complex networks of phase oscillators, which constitute a paradigmatic model for many complex systems.




Complex Systems


Book Description

"Complex Systems: Fractionality, Time-delay and Synchronization" covers the most recent developments and advances in the theory and application of complex systems in these areas. Each chapter was written by scientists highly active in the field of complex systems. The book discusses a new treatise on fractional dynamics and control, as well as the new methods for differential delay systems and control. Lastly, a theoretical framework for the complexity and synchronization of complex system is presented. The book is intended for researchers in the field of nonlinear dynamics in mathematics, physics and engineering. It can also serve as a reference book for graduate students in physics, applied mathematics and engineering. Dr. Albert C.J. Luo is a Professor at Southern Illinois University Edwardsville, USA. Dr. Jian-Qiao Sun is a Professor at the University of California, Merced, USA.




Stochastic Transport in Complex Systems


Book Description

The first part of the book provides a pedagogical introduction to the physics of complex systems driven far from equilibrium. In this part we discuss the basic concepts and theoretical techniques which are commonly used to study classical stochastic transport in systems of interacting driven particles. The analytical techniques include mean-field theories, matrix product ansatz, renormalization group, etc. and the numerical methods are mostly based on computer simulations. In the second part of the book these concepts and techniques are applied not only to vehicular traffic but also to transport and traffic-like phenomena in living systems ranging from collective movements of social insects (for example, ants) on trails to intracellular molecular motor transport. These demonstrate the conceptual unity of the fundamental principles underlying the apparent diversity of the systems and the utility of the theoretical toolbox of non-equilibrium statistical mechanics in interdisciplinary research far beyond the traditional disciplinary boundaries of physics. - Leading industry experts provide a broad overview of the interdisciplinary nature of physics - Presents unified descriptions of intracellular, ant, and vehicular traffic from a physics point of view - Applies theoretical methods in practical everyday situations - Reference and guide for physicists, engineers and graduate students




MATHEMATICAL REALITY


Book Description

A thing is complex, and hybrid with other things sometimes. Then, what is the reality of a thing? The reality of a thing is its state of existed, exists, or will exist in the world, independent on the understanding of human beings, which implies that the reality holds on by human beings maybe local or gradual, not the reality of a thing. Hence, to hold on the reality of things is the main objective of science in the history of human development.




Complex Systems and Networks


Book Description

This elementary book provides some state-of-the-art research results on broad disciplinary sciences on complex networks. It presents an in-depth study with detailed description of dynamics, controls and applications of complex networks. The contents of this book can be summarized as follows. First, the dynamics of complex networks, for example, the cluster dynamic analysis by using kernel spectral methods, community detection algorithms in bipartite networks, epidemiological modeling with demographics and epidemic spreading on multi-layer networks, are studied. Second, the controls of complex networks are investigated including topics like distributed finite-time cooperative control of multi-agent systems by applying homogenous-degree and Lyapunov methods, composite finite-time containment control for disturbed second-order multi-agent systems, fractional-order observer design of multi-agent systems, chaos control and anticontrol of complex systems via Parrondos game and many more. Third, the applications of complex networks provide some applicable carriers, which show the importance of theories developed in complex networks. In particular, a general model for studying time evolution of transition networks, deflection routing in complex networks, recommender systems for social networks analysis and mining, strategy selection in networked evolutionary games, integration and methods in computational biology, are discussed in detail.




The Synchronized Production System


Book Description

Now in its first English edition, this text focuses on the Japanese concept of "kaizen," or "continuous improvement," to demonstrate how smaller, easily adopted improvements can increase performance and reduce production costs.




Thermoacoustic Instability


Book Description

This book systematically presents the consolidated findings of the phenomenon of self-organization observed during the onset of thermoacoustic instability using approaches from dynamical systems and complex systems theory. Over the last decade, several complex dynamical states beyond limit cycle oscillations such as quasiperiodicity, frequency-locking, period-n, chaos, strange non-chaos, and intermittency have been discovered in thermoacoustic systems operated in laminar and turbulent flow regimes. During the onset of thermoacoustic instability in turbulent systems, an ordered acoustic field and large coherent vortices emerge from the background of turbulent combustion. This emergence of order from disorder in both temporal and spatiotemporal dynamics is explored in the contexts of synchronization, pattern formation, collective interaction, multifractality, and complex networks. For the past six decades, the spontaneous emergence of large amplitude, self-sustained, tonal oscillations in confined combustion systems, characterized as thermoacoustic instability, has remained one of the most challenging areas of research. The presence of such instabilities continues to hinder the development and deployment of high-performance combustion systems used in power generation and propulsion applications. Even with the advent of sophisticated measurement techniques to aid experimental investigations and vast improvements in computational power necessary to capture flow physics in high fidelity simulations, conventional reductionist approaches have not succeeded in explaining the plethora of dynamical behaviors and the associated complexities that arise in practical combustion systems. As a result, models and theories based on such approaches are limited in their application to mitigate or evade thermoacoustic instabilities, which continue to be among the biggest concerns for engine manufacturers today. This book helps to overcome these limitations by providing appropriate methodologies to deal with nonlinear thermoacoustic oscillations, and by developing control strategies that can mitigate and forewarn thermoacoustic instabilities. The book is also beneficial to scientists and engineers studying the occurrence of several other instabilities, such as flow-induced vibrations, compressor surge, aeroacoustics and aeroelastic instabilities in diverse fluid-mechanical environments, to graduate students who intend to apply dynamical systems and complex systems approach to their areas of research, and to physicists who look for experimental applications of their theoretical findings on nonlinear and complex systems.




Theory and Engineering of Complex Systems and Dependability


Book Description

Building upon a long tradition of scientifi c conferences dealing with problems of reliability in technical systems, in 2006 Department of Computer Engineering at Wrocław University of Technology established DepCoS-RELCOMEX series of events in order to promote a comprehensive approach to evaluation of system performability which is now commonly called dependability. Contemporary complex systems integrate variety of technical, information, soft ware and human (users, administrators and management) resources. Their complexity comes not only from involved technical and organizational structures but mainly from complexity of information processes that must be implemented in specific operational environment (data processing, monitoring, management, etc.). In such a case traditional methods of reliability evaluation focused mainly on technical levels are insufficient and more innovative, multidisciplinary methods of dependability analysis must be applied. Selection of submissions for these proceedings exemplify diversity of topics that must be included in such analyses: tools, methodologies and standards for modelling, design and simulation of the systems, security and confidentiality in information processing, specific issues of heterogeneous, today often wireless, computer networks, or management of transportation networks. In addition, this edition of the conference hosted the 5th CrISS-DESSERT Workshop devoted to the problems of security and safety in critical information systems.




Nonlinear Dynamics in Optical Complex Systems


Book Description

This book is the first comprehensive volume on nonlinear dynamics and chaos in optical systems. A few books have been published recently, but they summarize applied mathematical methodologies toward understanding of nonlinear dynamics in laser systems with small degrees of freedom focusing on linearized perturbation and bifurcation analyses. In contrast to these publications, this book summarizes nonlinear dynamic problems in optical complex systems possessing large degrees of freedom, systematically featuring our original experimental results and their theoretical treatments. The new concepts introduced in this book will have a wide appeal to audiences involved in a rapidly-growing field of nonlinear dynamics. This book focuses on nonlinear dynamics and cooperative functions in realistic optical complex systems, such as multimode lasers, laser array, coupled nonlinear-element systems, and their applications to optical processing. This book is prepared for graduate students majoring in optical and laser physics, but the generic nature of complex systems described in this book may stimulate researchers in the field of nonlinear dynamics covering different academic areas including applied mathematics, hydrodynamics, celestial mechanics, chemistry, biology, and economics.