Complex Variables II Essentials


Book Description

REA’s Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Complex Variables II includes elementary mappings and Mobius transformation, mappings by general functions, conformal mappings and harmonic functions, applying complex functions to applied mathematics, analytic continuation, and analytic function properties.




Applied Complex Variables


Book Description

Fundamentals of analytic function theory — plus lucid exposition of 5 important applications: potential theory, ordinary differential equations, Fourier transforms, Laplace transforms, and asymptotic expansions. Includes 66 figures.




Tasty Bits of Several Complex Variables


Book Description

This book is a polished version of my course notes for Math 6283, Several Complex Variables, given in Spring 2014 and Spring 2016 semester at Oklahoma State University. The course covers basics of holomorphic function theory, CR geometry, the dbar problem, integral kernels and basic theory of complex analytic subvarieties. See http: //www.jirka.org/scv/ for more information.




Complex Variables and Their Applications


Book Description

An understanding of functions of a complex variable, together with the importance of their applications, form an essential part of the study of mathematics. Complex Variables and their Applications assumes as little background knowledge of the reader as is practically possible, a sound knowledge of calculus and basic real analysis being the only essential pre-requisites. With an emphasis on clear and careful explanation, the book covers all the essential topics covered in a first course on Complex Variables, such as differentiation, integration and applications, Laurent series, residue theory and applications, and elementary conformal mappings. The reader is also introduced to the Schwarz-Christoffel transformation, Dirchlet problems, harmonic functions, analytic continuation, infinite products, asymptotic series and elliptic functions. Applications of complex variable theory to linear ordinary differential equations and integral transforms are also included. Complex Variables and their Applications is an ideal textbook and resource for second and final year students of mathematics, engineering and physics.




An Introduction to Complex Function Theory


Book Description

This book provides a rigorous yet elementary introduction to the theory of analytic functions of a single complex variable. While presupposing in its readership a degree of mathematical maturity, it insists on no formal prerequisites beyond a sound knowledge of calculus. Starting from basic definitions, the text slowly and carefully develops the ideas of complex analysis to the point where such landmarks of the subject as Cauchy's theorem, the Riemann mapping theorem, and the theorem of Mittag-Leffler can be treated without sidestepping any issues of rigor. The emphasis throughout is a geometric one, most pronounced in the extensive chapter dealing with conformal mapping, which amounts essentially to a "short course" in that important area of complex function theory. Each chapter concludes with a wide selection of exercises, ranging from straightforward computations to problems of a more conceptual and thought-provoking nature.




Fundamentals of Complex Analysis with Applications to Engineering and Science (Classic Version)


Book Description

This title is part of the Pearson Modern Classics series. Pearson Modern Classics are acclaimed titles at a value price. Please visit www.pearsonhighered.com/math-classics-series for a complete list of titles. This is the best seller in this market. It provides a comprehensive introduction to complex variable theory and its applications to current engineering problems. It is designed to make the fundamentals of the subject more easily accessible to students who have little inclination to wade through the rigors of the axiomatic approach. Modeled after standard calculus books--both in level of exposition and layout--it incorporates physical applications throughout the presentation, so that the mathematical methodology appears less sterile to engineering students.




Complex Variables for Scientists and Engineers


Book Description

Outstanding undergraduate text provides a thorough understanding of fundamentals and creates the basis for higher-level courses. Numerous examples and extensive exercise sections of varying difficulty, plus answers to selected exercises. 1990 edition.




Complex Analysis 2


Book Description

The book contains a complete self-contained introduction to highlights of classical complex analysis. New proofs and some new results are included. All needed notions are developed within the book: with the exception of some basic facts which can be found in the ̄rst volume. There is no comparable treatment in the literature.




Complex Variables


Book Description

From the algebraic properties of a complete number field, to the analytic properties imposed by the Cauchy integral formula, to the geometric qualities originating from conformality, Complex Variables: A Physical Approach with Applications and MATLAB explores all facets of this subject, with particular emphasis on using theory in practice. The first five chapters encompass the core material of the book. These chapters cover fundamental concepts, holomorphic and harmonic functions, Cauchy theory and its applications, and isolated singularities. Subsequent chapters discuss the argument principle, geometric theory, and conformal mapping, followed by a more advanced discussion of harmonic functions. The author also presents a detailed glimpse of how complex variables are used in the real world, with chapters on Fourier and Laplace transforms as well as partial differential equations and boundary value problems. The final chapter explores computer tools, including Mathematica®, MapleTM, and MATLAB®, that can be employed to study complex variables. Each chapter contains physical applications drawing from the areas of physics and engineering. Offering new directions for further learning, this text provides modern students with a powerful toolkit for future work in the mathematical sciences.




Complex Analysis


Book Description

All needed notions are developed within the book: with the exception of fundamentals which are presented in introductory lectures, no other knowledge is assumed Provides a more in-depth introduction to the subject than other existing books in this area Over 400 exercises including hints for solutions are included