Mechanics Of Composite Materials


Book Description

This book balances introduction to the basic concepts of the mechanical behavior of composite materials and laminated composite structures. It covers topics from micromechanics and macromechanics to lamination theory and plate bending, buckling, and vibration, clarifying the physical significance of composite materials. In addition to the materials covered in the first edition, this book includes more theory-experiment comparisons and updated information on the design of composite materials.




Mechanics of Composite Materials


Book Description

In 1997, Dr. Kaw introduced the first edition of Mechanics of Composite Materials, receiving high praise for its comprehensive scope and detailed examples. He also introduced the groundbreaking PROMAL software, a valuable tool for designing and analyzing structures made of composite materials. Updated and expanded to reflect recent advances in the







Advanced Mechanics of Composite Materials


Book Description

Composite materials have been representing most significant breakthroughs in various industrial applications, particularly in aerospace structures, during the past thirty five years. The primary goal of Advanced Mechanics of Composite Materials is the combined presentation of advanced mechanics, manufacturing technology, and analysis of composite materials. This approach lets the engineer take into account the essential mechanical properties of the material itself and special features of practical implementation, including manufacturing technology, experimental results, and design characteristics. Giving complete coverage of the topic: from basics and fundamentals to the advanced analysis including practical design and engineering applications. At the same time including a detailed and comprehensive coverage of the contemporary theoretical models at the micro- and macro- levels of material structure, practical methods and approaches, experimental results, and optimisation of composite material properties and component performance. The authors present the results of more than 30 year practical experience in the field of design and analysis of composite materials and structures. * Eight chapters progressively covering all structural levels of composite materials from their components through elementary plies and layers to laminates* Detailed presentation of advanced mechanics of composite materials * Emphasis on nonlinear material models (elasticity, plasticity, creep) and structural nonlinearity




Mechanics of Composite Materials with MATLAB


Book Description

This is a book for people who love mechanics of composite materials and ? MATLAB . We will use the popular computer package MATLAB as a matrix calculator for doing the numerical calculations needed in mechanics of c- posite materials. In particular, the steps of the mechanical calculations will be emphasized in this book. The reader will not ?nd ready-made MATLAB programs for use as black boxes. Instead step-by-step solutions of composite material mechanics problems are examined in detail using MATLAB. All the problems in the book assume linear elastic behavior in structural mechanics. The emphasis is not on mass computations or programming, but rather on learning the composite material mechanics computations and understanding of the underlying concepts. The basic aspects of the mechanics of ?ber-reinforced composite materials are covered in this book. This includes lamina analysis in both the local and global coordinate systems, laminate analysis, and failure theories of a lamina.




Principles of Composite Material Mechanics


Book Description

Principles of Composite Material Mechanics covers a unique blend of classical and contemporary mechanics of composites technologies. It presents analytical approaches ranging from the elementary mechanics of materials to more advanced elasticity and finite element numerical methods, discusses novel materials such as nanocomposites and hybrid multis




Mechanics of Composite Structures


Book Description

An increase in the use of composite materials has led to a greater demand for engineers versed in the design of structures made from such materials. This book demonstrates advanced concepts and emphasises structures. More than 300 illustrations, 50 fully worked problems, and material properties data sets are included.




Mechanics of Composite Structural Elements


Book Description

This second edition of the textbook presents a systematic introduction to the structural mechanics of composite components. The book focusses on modeling and calculation of sandwiches and laminated composites i.e. anisotropic material. The new edition includes an additional chapter covering the latest advances in both research and applications, which are highly relevant for readers. The textbook is written for use not only in engineering curricula of aerospace, civil and mechanical engineering, but also for materials science and applied mechanics. Furthermore, it addresses practicing engineers and researchers. No prior knowledge of composite materials and structures is required for the understanding of its content. The book is close to classical courses of "Strength of Materials" and "Theory of Beams, Plates and Shells" but it extends the classic content on two topics: the linear elastic material behavior of isotropic and non-isotropic structural elements, and inhomogeneous material properties in the thickness direction. The Finite Element Analysis of laminate and sandwich structures is briefly presented. Many solved examples illustrate the application of the techniques learned.




Mechanics and Analysis of Composite Materials


Book Description

Covers specific features of material behaviour such as nonlinear elasticity, plasticity, creep, and structural nonlinearity. This work discusses the problems of material micro- and macro-mechanics such as stress diffusion in a unidirectional material with broken fibers, physical and statistical aspects of fiber strength, and more.




Computational Mechanics of Composite Materials


Book Description

Computational Mechanics of Composite Materials lays stress on the advantages of combining theoretical advancements in applied mathematics and mechanics with the probabilistic approach to experimental data in meeting the practical needs of engineers. Features: Programs for the probabilistic homogenisation of composite structures with finite numbers of components allow composites to be treated as homogeneous materials with simpler behaviours. Treatment of defects in the interfaces within heterogeneous materials and those arising in composite objects as a whole by stochastic modelling. New models for the reliability of composite structures. Novel numerical algorithms for effective Monte-Carlo simulation. Computational Mechanics of Composite Materials will be of interest to academic and practising civil, mechanical, electronic and aerospatial engineers, to materials scientists and to applied mathematicians requiring accurate and usable models of the behaviour of composite materials.