Composite Species in the Hydrodynamic Theory of Atomic Mixing in Multicomponent Partially Ionized Gases


Book Description

A dynamical description of atomic mixing in multicomponent gases and plasmas was summarized in a previous report (UCRL-ID-145502). That description is based on the use of separate continuity and momentum equations for each species present, including neutral atoms, ions, and free electrons. This level of detail is not always feasible in practical problems, where subsets of species (e.g., neutral atoms of a particular element together with their ionization products) must be grouped or lumped together into composite species or materials to make the problem tractable. A simple procedure for constructing such composite species was outlined in UCRL-ID-145502, but not in sufficient detail to enable implementation. In particular, the treatment of the free electrons presents some subtleties, since they cannot be included in the composite species for dynamical purposes, whereas they are ordinarily lumped together with the atoms and ions that produced them for state equation purposes. Our purpose here is to provide a more complete description of the procedure by which composite species and their evolution equations may be defined and derived. Special attention is given to the problem of how to deal with the free electrons in a manner consistent with the different roles they play in the dynamics and thermodynamics. The results are given in a form that should be well suited for implementation in hydrodynamics codes that use conventional material state equations.




Multicomponent Flow Modeling


Book Description

The goal of this is book to give a detailed presentation of multicomponent flow models and to investigate the mathematical structure and properties of the resulting system of partial differential equations. These developments are also illustrated by simulating numerically a typical laminar flame. Our aim in the chapters is to treat the general situation of multicomponent flows, taking into account complex chemistry and detailed transport phe nomena. In this book, we have adopted an interdisciplinary approach that en compasses a physical, mathematical, and numerical point of view. In par ticular, the links between molecular models, macroscopic models, mathe matical structure, and mathematical properties are emphasized. We also often mention flame models since combustion is an excellent prototype of multicomponent flow. This book still does not pretend to be a complete survey of existing models and related mathematical results. In particular, many subjects like multi phase-flows , turbulence modeling, specific applications, porous me dia, biological models, or magneto-hydrodynamics are not covered. We rather emphasize the fundamental modeling of multicomponent gaseous flows and the qualitative properties of the resulting systems of partial dif ferential equations. Part of this book was taught at the post-graduate level at the Uni versity of Paris, the University of Versailles, and at Ecole Poly technique in 1998-1999 to students of applied mathematics.




NBS Special Publication


Book Description










Energy Modelling in Minerals


Book Description

Nothing provided







Process Intensification


Book Description

Process Intensification: Engineering for Efficiency, Sustainability and Flexibility is the first book to provide a practical working guide to understanding process intensification (PI) and developing successful PI solutions and applications in chemical process, civil, environmental, energy, pharmaceutical, biological, and biochemical systems. Process intensification is a chemical and process design approach that leads to substantially smaller, cleaner, safer, and more energy efficient process technology. It improves process flexibility, product quality, speed to market and inherent safety, with a reduced environmental footprint. This book represents a valuable resource for engineers working with leading-edge process technologies, and those involved research and development of chemical, process, environmental, pharmaceutical, and bioscience systems. - No other reference covers both the technology and application of PI, addressing fundamentals, industry applications, and including a development and implementation guide - Covers hot and high growth topics, including emission prevention, sustainable design, and pinch analysis - World-class authors: Colin Ramshaw pioneered PI at ICI and is widely credited as the father of the technology




Intermolecular and Surface Forces


Book Description

Intermolecular and Surface Forces describes the role of various intermolecular and interparticle forces in determining the properties of simple systems such as gases, liquids and solids, with a special focus on more complex colloidal, polymeric and biological systems. The book provides a thorough foundation in theories and concepts of intermolecular forces, allowing researchers and students to recognize which forces are important in any particular system, as well as how to control these forces. This third edition is expanded into three sections and contains five new chapters over the previous edition. - Starts from the basics and builds up to more complex systems - Covers all aspects of intermolecular and interparticle forces both at the fundamental and applied levels - Multidisciplinary approach: bringing together and unifying phenomena from different fields - This new edition has an expanded Part III and new chapters on non-equilibrium (dynamic) interactions, and tribology (friction forces)




Polymer Physics


Book Description

A molecular view on the fundamental issues in polymer physics is provided with an aim at students in chemistry, chemical engineering, condensed matter physics and material science courses. An updated translation by the author, a renowned Chinese chemist, it has been proven to be an effective source of learning for many years. Up-to-date developments are reflected throughout the work in this concise presentation of the topic. The author aims at presenting the subject in an efficient manner, which makes this particularly suitable for teaching polymer physics in settings where time is limited, without having to sacrifice the extensive scope that this topic demands.