The Physics of Semiconductors


Book Description

Modern fabrication techniques have made it possible to produce semiconductor devices whose dimensions are so small that quantum mechanical effects dominate their behavior. This book describes the key elements of quantum mechanics, statistical mechanics, and solid-state physics that are necessary in understanding these modern semiconductor devices. The author begins with a review of elementary quantum mechanics, and then describes more advanced topics, such as multiple quantum wells. He then disusses equilibrium and nonequilibrium statistical mechanics. Following this introduction, he provides a thorough treatment of solid-state physics, covering electron motion in periodic potentials, electron-phonon interaction, and recombination processes. The final four chapters deal exclusively with real devices, such as semiconductor lasers, photodiodes, flat panel displays, and MOSFETs. The book contains many homework exercises and is suitable as a textbook for electrical engineering, materials science, or physics students taking courses in solid-state device physics. It will also be a valuable reference for practising engineers in optoelectronics and related areas.




Compound Semiconductor Power Transistors and


Book Description




Silicon RF Power MOSFETS


Book Description

"The world-wide proliferation of cellular networks has revolutionized telecommunication systems. The transition from Analog to Digital RF technology enabled substantial increase in voice traffic using available spectrum, and subsequently the delivery of digitally based text messaging, graphics and even streaming video. The deployment of digital networks has required migration to multi-carrier RF power amplifiers with stringent demands on linearity and efficiency. This book describes the physics, design considerations and RF performance of silicon power Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs) that are at the heart of the power amplifiers. The recent invention and commercialization of RF power MOSFETs based on the super-linear mode of operation is described in this book for the first time. In addition to the analytical treatment of the physics, extensive description of transistor operation is provided by using the results of numerical simulations. Many novel power MOSFET structures are analyzed and their performance is compared with those of the laterally-diffused (LD) MOSFET that are currently used in 2G and 3G networks."--BOOK JACKET.Title Summary field provided by Blackwell North America, Inc. All Rights Reserved







Tunneling Field Effect Transistors


Book Description

This book will give insight into emerging semiconductor devices from their applications in electronic circuits, which form the backbone of electronic equipment. It provides desired exposure to the ever-growing field of low-power electronic devices and their applications in nanoscale devices, memory design, and biosensing applications. Tunneling Field Effect Transistors: Design, Modeling and Applications brings researchers and engineers from various disciplines of the VLSI domain to together tackle the emerging challenges in the field of nanoelectronics and applications of advanced low-power devices. The book begins by discussing the challenges of conventional CMOS technology from the perspective of low-power applications, and it also reviews the basic science and developments of subthreshold swing technology and recent advancements in the field. The authors discuss the impact of semiconductor materials and architecture designs on TFET devices and the performance and usage of FET devices in various domains such as nanoelectronics, Memory Devices, and biosensing applications. They also cover a variety of FET devices, such as MOSFETs and TFETs, with various structures based on the tunneling transport phenomenon. The contents of the book have been designed and arranged in such a way that Electrical Engineering students, researchers in the field of nanodevices and device-circuit codesign, as well as industry professionals working in the domain of semiconductor devices, will find the material useful and easy to follow.




Modeling and Characterization of RF and Microwave Power FETs


Book Description

This book is a comprehensive exposition of FET modeling, and is a must-have resource for seasoned professionals and new graduates in the RF and microwave power amplifier design and modeling community. In it, you will find descriptions of characterization and measurement techniques, analysis methods, and the simulator implementation, model verification and validation procedures that are needed to produce a transistor model that can be used with confidence by the circuit designer. Written by semiconductor industry professionals with many years' device modeling experience in LDMOS and III-V technologies, this was the first book to address the modeling requirements specific to high-power RF transistors. A technology-independent approach is described, addressing thermal effects, scaling issues, nonlinear modeling, and in-package matching networks. These are illustrated using the current market-leading high-power RF technology, LDMOS, as well as with III-V power devices.













High Speed Compound Semiconductor Devices for Wireless Applications and State-of-the-Art Program on Compound Semiconductors (XXXIII)


Book Description

The proceedings were published before the two symposia actually took place, and some of the papers presented were not received in time. The 21 that did make it discuss compound semiconductors from perspectives of recent developments in materials, growth, characterization, processing, device fabrication, and reliability. Among the specific topics are the non-crystallographic wet etching of gallium arsenide, fabricating an integrated optics One to Two optical switch, and the fabrication and materials characterization of pulsed laser deposited nickel silicide ohmic contacts to 4H n-SiC. Annotation copyrighted by Book News, Inc., Portland, OR