Comprehensive Biomaterials


Book Description

Comprehensive Biomaterials brings together the myriad facets of biomaterials into one, major series of six edited volumes that would cover the field of biomaterials in a major, extensive fashion: Volume 1: Metallic, Ceramic and Polymeric Biomaterials Volume 2: Biologically Inspired and Biomolecular Materials Volume 3: Methods of Analysis Volume 4: Biocompatibility, Surface Engineering, and Delivery Of Drugs, Genes and Other Molecules Volume 5: Tissue and Organ Engineering Volume 6: Biomaterials and Clinical Use Experts from around the world in hundreds of related biomaterials areas have contributed to this publication, resulting in a continuum of rich information appropriate for many audiences. The work addresses the current status of nearly all biomaterials in the field, their strengths and weaknesses, their future prospects, appropriate analytical methods and testing, device applications and performance, emerging candidate materials as competitors and disruptive technologies, and strategic insights for those entering and operational in diverse biomaterials applications, research and development, regulatory management, and commercial aspects. From the outset, the goal was to review materials in the context of medical devices and tissue properties, biocompatibility and surface analysis, tissue engineering and controlled release. It was also the intent both, to focus on material properties from the perspectives of therapeutic and diagnostic use, and to address questions relevant to state-of-the-art research endeavors. Reviews the current status of nearly all biomaterials in the field by analyzing their strengths and weaknesses, performance as well as future prospects Presents appropriate analytical methods and testing procedures in addition to potential device applications Provides strategic insights for those working on diverse application areas such as R&D, regulatory management, and commercial development




Comprehensive Biomaterials II


Book Description

Comprehensive Biomaterials II, Second Edition, Seven Volume Set brings together the myriad facets of biomaterials into one expertly-written series of edited volumes. Articles address the current status of nearly all biomaterials in the field, their strengths and weaknesses, their future prospects, appropriate analytical methods and testing, device applications and performance, emerging candidate materials as competitors and disruptive technologies, research and development, regulatory management, commercial aspects, and applications, including medical applications. Detailed coverage is given to both new and emerging areas and the latest research in more traditional areas of the field. Particular attention is given to those areas in which major recent developments have taken place. This new edition, with 75% new or updated articles, will provide biomedical scientists in industry, government, academia, and research organizations with an accurate perspective on the field in a manner that is both accessible and thorough. Reviews the current status of nearly all biomaterials in the field by analyzing their strengths and weaknesses, performance, and future prospects Covers all significant emerging technologies in areas such as 3D printing of tissues, organs and scaffolds, cell encapsulation; multimodal delivery, cancer/vaccine - biomaterial applications, neural interface understanding, materials used for in situ imaging, and infection prevention and treatment Effectively describes the many modern aspects of biomaterials from basic science, to clinical applications




Biomaterials Science


Book Description

The revised edition of the renowned and bestselling title is the most comprehensive single text on all aspects of biomaterials science from principles to applications. Biomaterials Science, fourth edition, provides a balanced, insightful approach to both the learning of the science and technology of biomaterials and acts as the key reference for practitioners who are involved in the applications of materials in medicine.This new edition incorporates key updates to reflect the latest relevant research in the field, particularly in the applications section, which includes the latest in topics such as nanotechnology, robotic implantation, and biomaterials utilized in cancer research detection and therapy. Other additions include regenerative engineering, 3D printing, personalized medicine and organs on a chip. Translation from the lab to commercial products is emphasized with new content dedicated to medical device development, global issues related to translation, and issues of quality assurance and reimbursement. In response to customer feedback, the new edition also features consolidation of redundant material to ensure clarity and focus. Biomaterials Science, 4th edition is an important update to the best-selling text, vital to the biomaterials' community. - The most comprehensive coverage of principles and applications of all classes of biomaterials - Edited and contributed by the best-known figures in the biomaterials field today; fully endorsed and supported by the Society for Biomaterials - Fully revised and updated to address issues of translation, nanotechnology, additive manufacturing, organs on chip, precision medicine and much more. - Online chapter exercises available for most chapters




Biomaterials Science


Book Description

The second edition of this bestselling title provides the most up-to-date comprehensive review of all aspects of biomaterials science by providing a balanced, insightful approach to learning biomaterials. This reference integrates a historical perspective of materials engineering principles with biological interactions of biomaterials. Also provided within are regulatory and ethical issues in addition to future directions of the field, and a state-of-the-art update of medical and biotechnological applications. All aspects of biomaterials science are thoroughly addressed, from tissue engineering to cochlear prostheses and drug delivery systems. Over 80 contributors from academia, government and industry detail the principles of cell biology, immunology, and pathology. Focus within pertains to the clinical uses of biomaterials as components in implants, devices, and artificial organs. This reference also touches upon their uses in biotechnology as well as the characterization of the physical, chemical, biochemical and surface properties of these materials. - Provides comprehensive coverage of principles and applications of all classes of biomaterials - Integrates concepts of biomaterials science and biological interactions with clinical science and societal issues including law, regulation, and ethics - Discusses successes and failures of biomaterials applications in clinical medicine and the future directions of the field - Cover the broad spectrum of biomaterial compositions including polymers, metals, ceramics, glasses, carbons, natural materials, and composites - Endorsed by the Society for Biomaterials




Hemocompatibility of Biomaterials for Clinical Applications


Book Description

Hemocompatibility of Biomaterials for Clinical Applications: Blood-Biomaterials Interactions summarizes the state-of-the-art on this important subject. The first part of the book reviews the latest research on blood composition and response, mechanisms of coagulation, test standards and methods. Next, the book assesses techniques for modifying biomaterial surfaces and developing coatings to improve hemocompatibility. In the final sections, users will find discussions on ways to improve the hemocompatibility of particular classes of biomaterials and a review of methods for improving medical devices. - Provides comprehensive information on the fundamentals of hemocompatibility and new technologies - Combines research in the biomaterials field in a digestible format for clinical applications - Provides a complete overview biomaterials in current use and test methods




Advances in Polyurethane Biomaterials


Book Description

Advances in Polyurethane Biomaterials brings together a thorough review of advances in the properties and applications of polyurethanes for biomedical applications. The first set of chapters in the book provides an important overview of the fundamentals of this material with chapters on properties and processing methods for polyurethane. Further sections cover significant uses such as their tissue engineering and vascular and drug delivery applications Written by an international team of leading authors, the book is a comprehensive and essential reference on this important biomaterial. - Brings together in-depth coverage of an important material, essential for many advanced biomedical applications - Connects the fundamentals of polyurethanes with state-of-the-art analysis of significant new applications, including tissue engineering and drug delivery - Written by a team of highly knowledgeable authors with a range of professional and academic experience, overseen by an editor who is a leading expert in the field




Self-assembling Biomaterials


Book Description

Self-assembling biomaterials: molecular design, characterization and application in biology and medicine provides a comprehensive coverage on an emerging area of biomaterials science, spanning from conceptual designs to advanced characterization tools and applications of self-assembling biomaterials, and compiling the recent developments in the field. Molecular self-assembly, the autonomous organization of molecules, is ubiquitous in living organisms and intrinsic to biological structures and function. Not surprisingly, the exciting field of engineering artificial self-assembling biomaterials often finds inspiration in Biology. More important, materials that self-assemble speak the language of life and can be designed to seamlessly integrate with the biological environment, offering unique engineering opportunities in bionanotechnology. The book is divided in five parts, comprising design of molecular building blocks for self-assembly; exclusive features of self-assembling biomaterials; specific methods and techniques to predict, investigate and characterize self-assembly and formed assemblies; different approaches for controlling self-assembly across multiple length scales and the nano/micro/macroscopic properties of biomaterials; diverse range of applications in biomedicine, including drug delivery, theranostics, cell culture and tissue regeneration. Written by researchers working in self-assembling biomaterials, it addresses a specific need within the Biomaterials scientific community. - Explores both theoretical and practical aspects of self-assembly in biomaterials - Includes a dedicated section on characterization techniques, specific for self-assembling biomaterials - Examines the use of dynamic self-assembling biomaterials




Biomaterials


Book Description

Discovered in the 20th century, biomaterials have contributed to many of the incredible scientific and technological advancements made in recent decades. This book introduces and details the tenets of biomaterials, their relevance in a various fields, practical applications of their products, and potential advancements of the years to come. A comprehensive resource, the text covers the reasons that certain properties of biomaterials contribute to specific applications, and students and researchers will appreciate this exhaustive textbook.




Integrated Biomaterials Science


Book Description

Integrated Biomaterials Science provides an intriguing insight into the world of biomaterials. It explores the materials and technology which have brought advances in new biomaterials, highlighting the way in which modern biology and medicine are synergistically linked to other key scientific disciplines-physics, chemistry, and engineering. In doing so, Integrated Biomaterials Science contains chapters on tissue engineering and gene therapy, standards and parameters of biomaterials, applications and interactions within the industrial world, as well as potential aspects of patent regulations. Integrated Biomaterials Science serves as a comprehensive guide to understanding this dynamic field, yet is designed so that chapters may be read and understood independently, depending on the needs of the reader. Integrated Biomaterials Science is attractive to a broad audience interested in a deeper understanding of this evolving field, and serves as a key resource for researchers and students of biomaterials courses, providing all with an opportunity to probe further. Key Features: -Comprehensively covers the latest developments in the field, -Each chapter is written by key field leaders, -Covers applications and interactions within the industrial world, -Presents standards on biomaterials, -Explores aspects of patent regulations and patentability of biomaterials, -Exceptionally detailed, yet easily understood - perfect as a guide for professional researchers or as a text for emerging students.




Chitosan Based Biomaterials Volume 1


Book Description

Chitosan Based Biomaterials: Fundamentals, Volume 1, provides the latest information on chitosan, a natural polymer derived from the marine material chitin. Chitosan displays unique properties, most notably biocompatibility and biodegradability. It can also be easily tuned to modify its structure or properties, making chitosan an excellent candidate as a biomaterial. Consequently, chitosan is being developed for many biomedical functions, ranging from tissue engineering and implant coatings to drug and gene delivery. This book looks at the fundamentals of chitosan-based biomaterials. - Contains specific focus on the techniques and technologies needed to develop chitosan for biomedical applications - Presents a comprehensive treatment of the fundamentals - Provides contributions from leading researchers with extensive experience in chitosan