Comprehensive Database of Diameter-based Biomass Regressions for North American Tree Species


Book Description

A database consisting of 2,640 equations compiled from the literature for predicting the biomass of trees and tree components from diameter measurements of species found in North America. Bibliographic information, geographic locations, diameter limits, diameter and biomass units, equation forms, statistical errors, and coefficients are provided for each equation, along with examples of how to use the database. The CD-ROM included with the paper version of this publication contains the complete database (Table 3) in spreadsheet format (Microsoft Excel 2002® with Windows XP®). The database files can also be viewed in both spreadsheet and pdf formats by directing your browser to the Global Change page at http://www.fs.fed.us/ne/global/pubs/books/index.html




Forest Growth and Yield Modeling


Book Description

Forest Growth and Yield Modeling synthesizes current scientific literature and provides insights in how models are constructed. Giving suggestions for future developments, and outlining keys for successful implementation of models the book provides a thorough and up-to-date, single source reference for students, researchers and practitioners requiring a current digest of research and methods in the field. The book describes current modelling approaches for predicting forest growth and yield and explores the components that comprise the various modelling approaches. It provides the reader with the tools for evaluating and calibrating growth and yield models and outlines the steps necessary for developing a forest growth and yield model. Single source reference providing an evaluation and synthesis of current scientific literature Detailed descriptions of example models Covers statistical techniques used in forest model construction Accessible, reader-friendly style







Research Paper PNW.


Book Description




Research Note NRS.


Book Description




New York's Forests


Book Description




Forest Mensuration


Book Description

Forest mensuration – the science of measurement applied to forest vegetation and forest products – holds value for basic ecology as well as sustainable forest management. As demands on the world’s forests have grown, scientists and professionals are increasingly called on to quantify forest composition, structure, and the goods and services forests provide. Grounded in geometry, sampling theory, and ecology as well as practical field experience, forest mensuration offers opportunities for creative problem solving and critical thinking. This fifth edition of the classic volume, Forest Mensuration, includes coverage of traditional and emerging topics, with attention to SI and Imperial units throughout. The book has been reorganised from the fourth edition to better integrate non-timber and ecological aspects of forest mensuration at the tree, stand, forest, and landscape scales throughout. The new edition includes new chapters that specifically address the integration of remotely sensed data in the forest inventory process, and inventory methods for dead and downed wood. One unifying theme, not only for traditional forestry but for the non-timber inventory and for remote sensing, is the use of covariates to make sampling more efficient and spatially explicit. This is introduced in the introductory chapter on statistics and the chapter on sampling designs has been restructured to highlight this approach and lay the foundation for further learning. New examples will be developed throughout the textbook with an emphasis on current issues and international practice. Students in applied forestry programs will find ample coverage of forest products and timber inventory, while expanded material on biodiversity, biomass and carbon inventory, downed dead wood, and the growing role of remote sensing in forest assessment will be valuable to a broader audience in applied ecology.




Remote Sensing of Biomass


Book Description

The accurate measurement of ecosystem biomass is of great importance in scientific, resource management and energy sectors. In particular, biomass is a direct measurement of carbon storage within an ecosystem and of great importance for carbon cycle science and carbon emission mitigation. Remote Sensing is the most accurate tool for global biomass measurements because of the ability to measure large areas. Current biomass estimates are derived primarily from ground-based samples, as compiled and reported in inventories and ecosystem samples. By using remote sensing technologies, we are able to scale up the sample values and supply wall to wall mapping of biomass. Three separate remote sensing technologies are available today to measure ecosystem biomass: passive optical, radar, and lidar. There are many measurement methodologies that range from the application driven to the most technologically cutting-edge. The goal of this book is to address the newest developments in biomass measurements, sensor development, field measurements and modeling. The chapters in this book are separated into five main sections.




Remote Sensing Modeling and Applications to Wildland Fires


Book Description

Scientists and managers alike need timely, cost-effective, and technically appropriate fire-related information to develop functional strategies for the diverse fire communities. "Remote Sensing Modeling and Applications to Wildland Fires" addresses wildland fire management needs by presenting discussions that link ecology and the physical sciences from local to regional levels, views on integrated decision support data for policy and decision makers, new technologies and techniques, and future challenges and how remote sensing might help to address them. While creating awareness of wildland fire management and rehabilitation issues, hands-on experience in applying remote sensing and simulation modeling is also shared. This book will be a useful reference work for researchers, practitioners and graduate students in the fields of fire science, remote sensing and modeling applications. Professor John J. Qu works at the Department of Geography and GeoInformation Science at George Mason University (GMU), USA. He is the Founder and Director of the Environmental Science and Technology Center (ESTC) and EastFIRE Lab at GMU.




Sampling Strategies for Natural Resources and the Environment


Book Description

Written by renowned experts in the field, Sampling Strategies for Natural Resources and the Environment covers the sampling techniques used in ecology, forestry, environmental science, and natural resources. The book presents methods to estimate aggregate characteristics on a per unit area basis as well as on an elemental basis. In addition to common sampling designs such as simple random sampling and list sampling, the authors explore more specialized designs for sampling vegetation, including randomized branch sampling and 3P sampling. One of the book's unique features is the emphasis on areal sampling designs, including plot/quadrat sampling, Bitterlich sampling, line intersect sampling, and several lesser known designs. The book also provides comprehensive solutions to the problem of edge effect. Another distinguishing aspect is the inclusion of sampling designs for continuums, focusing on the methods of Monte Carlo integration. By presenting a conceptual understanding of each sampling design and estimation procedure as well as mathematical derivations and proofs in the chapter appendices, this text promotes a deep understanding of the underpinnings of sampling theory, estimation, and inference. Moreover, it will help you reliably sample natural populations and continuums.