Comprehensive Glycoscience


Book Description

Comprehensive Glycoscience, Second Edition, Five Volume Set assembles the top minds in this area who provide an update on the renowned 2007 first edition, including new discoveries and latest advances in glycoscience-related research areas such as glycan microarrays, carbohydrate materials, glycoengineering and microbiome research. The result is an up-to-date work which will impress readers with the many new advances that are outlined and taught in this second edition. Most areas of the original edition have been majorly updated, some overlapping topics have been consolidated, and several topics have been rearranged into more appropriate sections. Combines multiple aspects of glycoscience in one comprehensive and reliable reference work Includes all major developments since 2007 (e.g. nanotechnology) Places glycoscience at the crossroads of several disciplines, including biology, biochemistry, glycobiology and synthetic chemistry, thus offering a truly interdisciplinary perspective




Essentials of Glycobiology


Book Description

Sugar chains (glycans) are often attached to proteins and lipids and have multiple roles in the organization and function of all organisms. "Essentials of Glycobiology" describes their biogenesis and function and offers a useful gateway to the understanding of glycans.




Transforming Glycoscience


Book Description

A new focus on glycoscience, a field that explores the structures and functions of sugars, promises great advances in areas as diverse as medicine, energy generation, and materials science, this report finds. Glycans-also known as carbohydrates, saccharides, or simply as sugars-play central roles in many biological processes and have properties useful in an array of applications. However, glycans have received little attention from the research community due to a lack of tools to probe their often complex structures and properties. Transforming Glycoscience: A Roadmap for the Future presents a roadmap for transforming glycoscience from a field dominated by specialists to a widely studied and integrated discipline, which could lead to a more complete understanding of glycans and help solve key challenges in diverse fields.




Glycoscience: Chemistry and Chemical Biology I–III


Book Description

Glycostructures play a highly diverse and crucial role in a myriad of organisms and systems in biology, physiology, medicine, and bioengineering and technology. Only in recent years have the tools been developed to partly understand the highly complex functions and chemistry behind them. In this set the editors present up-to-date information on glycostructures, their chemistry and chemical biology, in the form of a comprehensive survey. The text is accompanied by over 2000 figures, chemical structures and reaction schemes and more than 9000 references. The accompanying CD-ROM enables, besides text searches, searches for structures, schemes, and other information.




Glycoscience


Book Description

As a reflection of the quantum leap that has been made in the study of glycostructures, the first edition of this book has been completely revised and updated. The editors give up-to-date information on glycostructures, their chemistry and chemical biology in the form of a completely comprehensive survey. Glycostructures play highly diverse and crucial roles in a myriad of organisms and important systems in biology, physiology, medicine, bioengineering and technology. Only in recent years have the tools been developed to partly understand the highly complex functions and the chemistry behind them. While many facts remain undiscovered, this MRW has been contributed to by a large number of the world’s leading researchers in the field.




Glycoinformatics


Book Description

This book provides current glycoinformatics methods and protocols used to support the determination of carbohydrate structures in biological samples as well as carbohydrate structure databases, the interaction of carbohydrates with proteins, and theoretical and experimental methods to study their three-dimensional structure and dynamics. Glycoinformatics explores this recently emerged field, which has come into being in order to address the needs of encoding, storing, and analyzing carbohydrate ‘sequences’ and their taxonomy using computers. Written in the highly successful Methods in Molecular Biology series format, chapters contain the kind of detailed description and key implementation advice to ensure successful results. Authoritative and timely, Glycoinformatics demonstrates the progress that has been achieved in glycoinformatics, which indicates that it is no longer a niche subject covered by only a few scientists but is truly coming of age.




Experimental Glycoscience


Book Description

The aim of this book is to provide experimental protocols covering many aspects of glycobiology, glycotechnology, and chemistry: biochemistry, molecular and cellular biology, genetics, physiology, and medicine. The protocols are all self-contained descriptions of the equipment and reagents needed, followed by details of the experimental procedure. In the post-genomic era, glycobiology is coming of age because more than half of proteins are glycosylated and the importance of sugar chains in various fields of life science research cannot be disregarded. Many scientists had not entered this area because glycobiology and glycoscience used to be considered difficult fields. This book, therefore, is presented much like a cookbook which can help scientists in fields other than glycobiology and glycoscience carry out research more easily.




Applied Biocatalysis


Book Description

Provides clear and comprehensive coverage of recently developed applied biocatalysis for synthetic organic chemists with an emphasis to promote green chemistry in pharmaceutical and process chemistry This book aims to make biocatalysis more accessible to both academic and industrial synthetic organic chemists. It focuses on current topics within the applied industrial biocatalysis field and includes short but detailed experimental methods on timely novel biocatalytic transformations using new enzymes or new methodologies using known enzymes. The book also features reactions that are “expanding and making the enzyme toolbox available to chemists”—providing readers with comprehensive methodology and detailed key sourcing information of a wide range of enzymes. Chapters in Applied Biocatalysis: The Chemist’s Enzyme Toolkit are organized by reaction type and feature a short introductory section describing the current state of the art for each example. Much of the book focuses on processes for which the enzymes are readily available so that organic chemists can synthesize appropriate quantities of chemicals with available materials in a standard chemical laboratory. Advanced methods are included to present examples of new enzymes that might encourage collaboration with suppliers or academic groups and that will educate chemists of rapidly expanding future possibilities. Focuses on current topics within the applied industrial biocatalysis field Offers experimental methods on novel biocatalytic transformations using new enzymes or new methodology using known enzymes Covers the hot topics of enzyme and chemoenzymatic cascades and biocatalysis in flow Edited by noted experts from both academia and industry with years of experience in the field of biocatalysis—particularly, the industrial applications of enzymes Written for synthetic organic chemists working in all industries but especially the pharmaceutical industry and for those in academia with an eye for biocatalysis, Applied Biocatalysis: The Chemist’s Enzyme Toolkit will also benefit academic groups in chemistry and related sciences that are using enzymes for synthetic purposes, as well as those working in the area of enzymology and molecular biology.




Antibody Glycosylation


Book Description

This book summarizes recent advances in antibody glycosylation research. Covering major topics relevant for immunoglobulin glycosylation - analytical methods, biosynthesis and regulation, modulation of effector functions - it provides new perspectives for research and development in the field of therapeutic antibodies, biomarkers, vaccinations, and immunotherapy. Glycans attached to both variable and constant regions of antibodies are known to affect the antibody conformation, stability, and effector functions. Although it focuses on immunoglobulin G (IgG), the most explored antibody in this context, and unravels the natural phenomena resulting from the mixture of IgG glycovariants present in the human body, the book also discusses other classes of human immunoglobulins, as well as immunoglobulins produced in other species and production systems. Further, it reviews the glycoanalytical methods applied to antibodies and addresses a range of less commonly explored topics, such as automatization and bioinformatics aspects of high-throughput antibody glycosylation analysis. Lastly, the book highlights application areas ranging from the ones already benefitting from antibody glycoengineering (such as monoclonal antibody production), to those still in the research stages (such as exploration of antibody glycosylation as a clinical or biological age biomarker), and the potential use of antibody glycosylation in the optimization of vaccine production and immunization protocols. Summarizing the current knowledge on the broad topic of antibody glycosylation and its therapeutic and biomarker potential, this book will appeal to a wide biomedical readership in academia and industry alike. Chapter 4 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.




Handbook of Glycosyltransferases and Related Genes


Book Description

The so-called postgenomic research era has now been launched, and the field of gly cobiology and glycotechnology has become one of the most important areas in life science because glycosylation is the most common post-translational modification reaction of proteins in vivo. On the basis of Swiss-Prot data, over 50% proteins are known to undergo glycosylation, but in fact the actual functions of most of the sugar chains in the glycoconjugates remain unknown. The complex carbohydrate chains of glycoproteins, glycolipids, and proteoglycans represent the secondary gene products formed through the reactions of glycosyl transferases. The regulation of the biosynthesis of sugar chains is under the control of the expression of glycosyltransferases, their substrate specificity, and their local ization in specific tissue sites. There is a growing body of evidence to suggest that these enzymes play pivotal roles in a variety of important cellular differentiation and developmental events, as well as in disease processes. Over 300 glycosyltransferases appear to exist in mammalian tissues. If the genes that have been purified and cloned from various species such as humans, cattle, pigs, rats and mice are counted as one, approximately 110 glycogenes that encode glycosyltransferases and related genes have been cloned at present, and this number continues to grow each day. However, most of the functions of the glycosyltransferase genes and related genes are unknown. This fact has stimulated numerous new and interesting approaches in molecular biologi cal investigations.