Compressible Turbulence Measurements in a Supersonic Flow With Adverse Pressure Gradient


Book Description

Mean flow and compressible turbulence measurements have been obtained upstream and within a shock boundary interaction and a compression ramp in Mach 3 flow. Compressible turbulence models have met with little success in the accurate prediction of high-speed flows involving complicated shock boundary interactions and adverse pressure gradients because of a crucial lack of experimental data. Data were collected using conventional Pitot and cone static probes, single overheat cross-wire anemometry, multiple overheat cross-wire anemometry, and flow visualization techniques. Direct measurements of the total Reynolds shear stress were obtained using a turbulence transformation. Results indicate that compressibility effects, as evidenced by the density fluctuations, are large relative to the velocity fluctuations and should be accounted for rigorously in new turbulence models.







Turbulent Shear Layers in Supersonic Flow


Book Description

A good understanding of turbulent compressible flows is essential to the design and operation of high-speed vehicles. Such flows occur, for example, in the external flow over the surfaces of supersonic aircraft, and in the internal flow through the engines. Our ability to predict the aerodynamic lift, drag, propulsion and maneuverability of high-speed vehicles is crucially dependent on our knowledge of turbulent shear layers, and our understanding of their behavior in the presence of shock waves and regions of changing pressure. Turbulent Shear Layers in Supersonic Flow provides a comprehensive introduction to the field, and helps provide a basis for future work in this area. Wherever possible we use the available experimental work, and the results from numerical simulations to illustrate and develop a physical understanding of turbulent compressible flows.




Compressible Turbulence Measurements in a Supersonic Boundary Layer Including Favorable Pressure Gradient Effects


Book Description

The effect of a favorable pressure gradient on the turbulent flow structure in a Mach 2.9 boundary layer (Re/m approx. 1.5 x 10(exp 7)) is investigated experimentally. Conventional flow and hot film measurements of turbulent fluctuation properties have been made upstream of and along an expansion ramp. Upstream measurements were taken in a zero pressure gradient boundary layer 44 cm from the nozzle throat in a 6.35 cm square test section. Measurements are obtained in the boundary layer, above the expansion ramp, 71.5 cm from the nozzle throat. Mean flow and turbulent flow characteristics are measured in all three dimensions. Comparisons are made between data obtained using single and multiple-overheat cross-wire anemometry as well as conventional mean flow probes. Conventional flow measurements were taken using a Pitot probe and a 10 degree cone static probe. Flow visualization was conducted via imaging techniques (Schlieren and shadowgraph photographs). Results suggest that compressibility effects, as seen through the density fluctuations in the Reynolds shear stress are roughly 10% relative to the mean velocity and are large relative to the velocity fluctuations. This is also observed in the total Reynolds shear stress; compressibility accounts for 50 - 75% of the total shear. This is particularly true in the favorable pressure gradient region, where though the peak fluctuation intensities are diminished, the streamwise component of the mean flow is larger, hence the contribution of the compressibility term is significant in the Reynolds shear.










Cluny Brown


Book Description




Scientific and Technical Aerospace Reports


Book Description

Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.