Computation of Curves and Surfaces


Book Description

Assembled here is a collection of articles presented at a NATO ADVANCED STU DY INSTITUTE held at Puerto de la Cruz, Tenerife, Spain during the period of July 10th to 21st, 1989. In addition to the editors of these proceedings Professor Larry L. Schumaker from Vanderbilt University, Nashville, Tennessee, served as a member of the international organizing committee. The contents of the contribu tions fall within the heading of COMPUTATION OF CURVES AND SURFACES and therefore address mathematical and computational issues pertaining to the dis play, modeling, interrogation and representation of complex geometrical objects in various scientific and technical environments. As is the intent of the NATO ASI program the meeting was two weeks in length and the body of the scientific activities was organized around prominent experts. Each of them presented lectures on his current research activity. We were fortunate to have sixteen distinguished invited speakers representing nine NATO countries: W. Bohm (Federal Republic of Germany), C. de Boor (USA), C.K. Chui (USA), W. Dahmen (Federal Republic of Germany), F. Fontanella (Italy), M. Gasca (Spain), R. Goldman (Canada), T.N.T. Goodman (UK), J.A. Gregory (UK), C. Hoffman (USA), J. Hoschek (Federal Republic of Germany), A. Le Mehaute (France), T. Lyche (Norway), C.A. Micchelli (USA), 1.1. Schumaker (USA), C. Traas (The Netherlands). The audience consisted of both young researchers as well as established scientists from twelve NATO countries and several non-NATO countries.




Modern Differential Geometry of Curves and Surfaces with Mathematica


Book Description

Presenting theory while using Mathematica in a complementary way, Modern Differential Geometry of Curves and Surfaces with Mathematica, the third edition of Alfred Gray’s famous textbook, covers how to define and compute standard geometric functions using Mathematica for constructing new curves and surfaces from existing ones. Since Gray’s death, authors Abbena and Salamon have stepped in to bring the book up to date. While maintaining Gray's intuitive approach, they reorganized the material to provide a clearer division between the text and the Mathematica code and added a Mathematica notebook as an appendix to each chapter. They also address important new topics, such as quaternions. The approach of this book is at times more computational than is usual for a book on the subject. For example, Brioshi’s formula for the Gaussian curvature in terms of the first fundamental form can be too complicated for use in hand calculations, but Mathematica handles it easily, either through computations or through graphing curvature. Another part of Mathematica that can be used effectively in differential geometry is its special function library, where nonstandard spaces of constant curvature can be defined in terms of elliptic functions and then plotted. Using the techniques described in this book, readers will understand concepts geometrically, plotting curves and surfaces on a monitor and then printing them. Containing more than 300 illustrations, the book demonstrates how to use Mathematica to plot many interesting curves and surfaces. Including as many topics of the classical differential geometry and surfaces as possible, it highlights important theorems with many examples. It includes 300 miniprograms for computing and plotting various geometric objects, alleviating the drudgery of computing things such as the curvature and torsion of a curve in space.




Effective Computational Geometry for Curves and Surfaces


Book Description

This book covers combinatorial data structures and algorithms, algebraic issues in geometric computing, approximation of curves and surfaces, and computational topology. Each chapter fully details and provides a tutorial introduction to important concepts and results. The focus is on methods which are both well founded mathematically and efficient in practice. Coverage includes references to open source software and discussion of potential applications of the presented techniques.




Curves and Surfaces for Computer Graphics


Book Description

Requires only a basic knowledge of mathematics and is geared toward the general educated specialists. Includes a gallery of color images and Mathematica code listings.




Rational Algebraic Curves


Book Description

The central problem considered in this introduction for graduate students is the determination of rational parametrizability of an algebraic curve and, in the positive case, the computation of a good rational parametrization. This amounts to determining the genus of a curve: its complete singularity structure, computing regular points of the curve in small coordinate fields, and constructing linear systems of curves with prescribed intersection multiplicities. The book discusses various optimality criteria for rational parametrizations of algebraic curves.




Differential Geometry of Curves and Surfaces


Book Description

Central topics covered include curves, surfaces, geodesics, intrinsic geometry, and the Alexandrov global angle comparision theorem Many nontrivial and original problems (some with hints and solutions) Standard theoretical material is combined with more difficult theorems and complex problems, while maintaining a clear distinction between the two levels




CRC Standard Curves and Surfaces


Book Description

CRC Standard Curves and Surfaces is a comprehensive illustrated catalog of curves and surfaces of geometric figures and algebraic, transcendental, and integral equations used in elementary and advanced mathematics. More than 800 graphics images are featured. Based on the successful CRC Handbook of Mathematical Curves and Surfaces, this new volume retains the easy to use "catalog" format of the original book. Illustrations are presented in a common format organized by type of equation. Associated equations are printed in their simplest form along with any notes required to understand the illustrations. Equations and graphics appear in a side-by-side format, with figures printed on righthand pages and text on lefthand pages. Most curves and surfaces are plotted with several parameter selections so that the variation of the mathematical functions are easily understandable. Coverage on algebraic surfaces and transcendental surfaces has been expanded by 30% over the original edition; material on functions in mathematical physics has expanded by 50%. New material on functions of random processes and functions of complex variable surfaces has been added. A complementary software program (see the next title listed in this catalog) enables you to plot all of the functions found in this book.




Least Squares Orthogonal Distance Fitting of Curves and Surfaces in Space


Book Description

Due to the continuing progress of sensor technology, the availability of 3-D cameras is already foreseeable. These cameras are capable of generating a large set of measurement points within a very short time. There are a variety of 3-D camera applications in the fields of robotics, rapid product development and digital factories. In order to not only visualize the point cloud but also to recognize 3-D object models from the point cloud and then further process them in CAD systems, efficient and stable algorithms for 3-D information processing are required. For the automatic segmentation and recognition of such geometric primitives as plane, sphere, cylinder, cone and torus in a 3-D point cloud, efficient software has recently been developed at the Fraunhofer IPA by Sung Joon Ahn. This book describes in detail the complete set of ‘best-?t’ algorithms for general curves and surfaces in space which are employed in the Fraunhofer software.




Designing Fair Curves and Surfaces


Book Description

This state-of-the-art study of the techniques used for designing curves and surfaces for computer-aided design applications focuses on the principle that fair shapes are always free of unessential features and are simple in design. The authors define fairness mathematically, demonstrate how newly developed curve and surface schemes guarantee fairness, and assist the user in identifying and removing shape aberrations in a surface model without destroying the principal shape characteristics of the model. Aesthetic aspects of geometric modeling are of vital importance in industrial design and modeling, particularly in the automobile and aerospace industries. Any engineer working in computer-aided design, computer-aided manufacturing, or computer-aided engineering will want to add this volume to his or her library. Researchers who have a familiarity with basic techniques in computer-aided graphic design and some knowledge of differential geometry will find this book a helpful reference. It is essential reading for statisticians working on approximation or smoothing of data with mathematical curves or surfaces.




Differential Geometry of Curves and Surfaces


Book Description

This is a textbook on differential geometry well-suited to a variety of courses on this topic. For readers seeking an elementary text, the prerequisites are minimal and include plenty of examples and intermediate steps within proofs, while providing an invitation to more excursive applications and advanced topics. For readers bound for graduate school in math or physics, this is a clear, concise, rigorous development of the topic including the deep global theorems. For the benefit of all readers, the author employs various techniques to render the difficult abstract ideas herein more understandable and engaging. Over 300 color illustrations bring the mathematics to life, instantly clarifying concepts in ways that grayscale could not. Green-boxed definitions and purple-boxed theorems help to visually organize the mathematical content. Color is even used within the text to highlight logical relationships. Applications abound! The study of conformal and equiareal functions is grounded in its application to cartography. Evolutes, involutes and cycloids are introduced through Christiaan Huygens' fascinating story: in attempting to solve the famous longitude problem with a mathematically-improved pendulum clock, he invented mathematics that would later be applied to optics and gears. Clairaut’s Theorem is presented as a conservation law for angular momentum. Green’s Theorem makes possible a drafting tool called a planimeter. Foucault’s Pendulum helps one visualize a parallel vector field along a latitude of the earth. Even better, a south-pointing chariot helps one visualize a parallel vector field along any curve in any surface. In truth, the most profound application of differential geometry is to modern physics, which is beyond the scope of this book. The GPS in any car wouldn’t work without general relativity, formalized through the language of differential geometry. Throughout this book, applications, metaphors and visualizations are tools that motivate and clarify the rigorous mathematical content, but never replace it.