Nonlinear Computational Structural Mechanics


Book Description

This book treats computational modeling of structures in which strong nonlinearities are present. It is therefore a work in mechanics and engineering, although the discussion centers on methods that are considered parts of applied mathematics. The task is to simulate numerically the behavior of a structure under various imposed excitations, forces, and displacements, and then to determine the resulting damage to the structure, and ultimately to optimize it so as to minimize the damage, subject to various constraints. The method used is iterative: at each stage an approximation to the displacements, strains, and stresses throughout the structure is computated and over all times in the interval of interest. This method leads to a general approach for understanding structural models and the necessary approximations.




Computation of Nonlinear Structures


Book Description

Comprehensively introduces linear and nonlinear structural analysis through mesh generation, solid mechanics and a new numerical methodology called c-type finite element method Takes a self-contained approach of including all the essential background materials such as differential geometry, mesh generation, tensor analysis with particular elaboration on rotation tensor, finite element methodology and numerical analysis for a thorough understanding of the topics Presents for the first time in closed form the geometric stiffness, the mass, the gyroscopic damping and the centrifugal stiffness matrices for beams, plates and shells Includes numerous examples and exercises Presents solutions for locking problems




Computational Methods in Nonlinear Structural and Solid Mechanics


Book Description

Computational Methods in Nonlinear Structural and Solid Mechanics covers the proceedings of the Symposium on Computational Methods in Nonlinear Structural and Solid Mechanics. The book covers the development of efficient discretization approaches; advanced numerical methods; improved programming techniques; and applications of these developments to nonlinear analysis of structures and solids. The chapters of the text are organized into 10 parts according to the issue they tackle. The first part deals with nonlinear mathematical theories and formulation aspects, while the second part covers computational strategies for nonlinear programs. Part 3 deals with time integration and numerical solution of nonlinear algebraic equations, while Part 4 discusses material characterization and nonlinear fracture mechanics, and Part 5 tackles nonlinear interaction problems. The sixth part discusses seismic response and nonlinear analysis of concrete structure, and the seventh part tackles nonlinear problems for nuclear reactors. Part 8 covers crash dynamics and impact problems, while Part 9 deals with nonlinear problems of fibrous composites and advanced nonlinear applications. The last part discusses computerized symbolic manipulation and nonlinear analysis software systems. The book will be of great interest to numerical analysts, computer scientists, structural engineers, and other professionals concerned with nonlinear structural and solid mechanics.




Nonlinear Structural Mechanics


Book Description

This book reviews the theoretical framework of nonlinear mechanics, covering computational methods, applications, parametric investigations of nonlinear phenomena and mechanical interpretation towards design. Builds skills via increasing levels of complexity.




Computation of Nonlinear Structures


Book Description

Comprehensively introduces linear and nonlinear structural analysis through mesh generation, solid mechanics and a new numerical methodology called c-type finite element method Takes a self-contained approach of including all the essential background materials such as differential geometry, mesh generation, tensor analysis with particular elaboration on rotation tensor, finite element methodology and numerical analysis for a thorough understanding of the topics Presents for the first time in closed form the geometric stiffness, the mass, the gyroscopic damping and the centrifugal stiffness matrices for beams, plates and shells Includes numerous examples and exercises Presents solutions for locking problems




Nonlinear Stability of Structures


Book Description

The present volume gives a very modern treatment of all theoretical as well as computational aspects of nonlinear structural stability. The theoretical part starts with the basic concepts of nonlinear static stability and classical dynamics and proceeds subsequently with recent progress in nonlinear dynamic stability and dynamic buckling of structures including an introduction to chaos. The first paper overviews theory and modelling of various structural instability problems. In the second section, nonlinear dynamic buckling and stability of autonomous discrete dissipative structural systems, gradient and non-gradient are discussed. The third paper handles stability and bifurcation phenomena in dynamical systems. The fourth paper contains an introduction to nonlinear dynamics and chaos. Special attention is devoted to the direct computation of critical points and path-switching strategies. A variety of numerical simulations for complicated nonlinear unstable responses also illustrate this part.




Nonlinear Structures and Systems, Volume 1


Book Description

Nonlinear Structures & Systems, Volume 1: Proceedings of the 37th IMAC, A Conference and Exposition on Structural Dynamics, 2019, the first volume of eight from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Nonlinear Dynamics, including papers on: Nonlinear Reduced-order Modeling Jointed Structures: Identification, Mechanics, Dynamics Experimental Nonlinear Dynamics Nonlinear Model & Modal Interactions Nonlinear Damping Nonlinear Modeling & Simulation Nonlinearity & System Identification




Theory of Nonlinear Structural Analysis


Book Description

A comprehensive book focusing on the Force Analogy Method, a novel method for nonlinear dynamic analysis and simulation This book focusses on the Force Analogy Method, a novel method for nonlinear dynamic analysis and simulation. A review of the current nonlinear analysis method for earthquake engineering will be summarized and explained. Additionally, how the force analogy method can be used in nonlinear static analysis will be discussed through several nonlinear static examples. The emphasis of this book is to extend and develop the force analogy method to performing dynamic analysis on structures under earthquake excitations, where the force analogy method is incorporated in the flexural element, axial element, shearing element and so on will be exhibited. Moreover, the geometric nonlinearity into nonlinear dynamic analysis algorithm based on the force analogy method is included. The application of the force analogy method in seismic design for buildings and structural control area is discussed and combined with practical engineering.




Analysis of Geometrically Nonlinear Structures


Book Description

The availability of computers has, in real terms, moved forward the practice of structural engineering. Where it was once enough to have any analysis given a complex configuration, the profession today is much more demanding. How engineers should be more demanding is the subject of this book. In terms of the theory of structures, the importance of geometric nonlinearities is explained by the theorem which states that "In the presence of prestress, geometric nonlinearities are of the same order of magnitude as linear elastic effects in structures. " This theorem implies that in most cases (in all cases of incremental analysis) geometric nonlinearities should be considered. And it is well known that problems of buckling, cable nets, fabric structures, ... REQUIRE the inclusion of geometric nonlinearities. What is offered in the book which follows is a unified approach (for both discrete and continuous systems) to geometric nonlinearities which incidentally does not require a discussion of large strain. What makes this all work is perturbation theory. Let the equations of equilibrium for a system be written as where P represents the applied loads, F represents the member forces or stresses, and N represents the operator which describes system equilibrium.




Nonlinear Dynamics of Structures, Systems and Devices


Book Description

This first of three volumes from the inaugural NODYCON, held at the University of Rome, in February of 2019, presents papers devoted to Nonlinear Dynamics of Structures, Systems and Devices. The collection features both well-established streams of research as well as novel areas and emerging fields of investigation. Topics in Volume I include multi-scale dynamics: coexistence of multiple time/space scales, large system dynamics; dynamics of structures/industrial machines/equipment/facilities (e.g., cable transportation systems, suspension bridges, cranes, vehicles); nonlinear interactions: parametric vibrations with single/multi-frequency excitations, multiple external and autoparametric resonances in multi-dof systems; nonlinear system identification: parametric/nonparametric identification, data-driven identification; experimental dynamics: benchmark experiments, experimental methods, instrumentation techniques, measurements in harsh environments, experimental validation of nonlinear models; wave propagation, solitons, kinks, breathers; solution methods for pdes: Lie groups, Hirota’s method, perturbation methods, etc; nonlinear waves in media (granular materials, porous materials, materials with memory); composite structures: multi-layer, functionally graded, thermal loading; fluid/structure interaction; nonsmooth and retarded dynamics: systems with impacts, free play, stick-slip, friction hysteresis; nonlinear systems with time and/or space delays; stability of delay differential equations, differential-algebraic equations; space/time reduced-order modeling: enhanced discretization methods, center manifold reduction, nonlinear normal modes, normal forms; fractional-order systems; computational techniques: efficient algorithms, use of symbolic manipulators, integration of symbolic manipulation and numerical methods, use of parallel processors; and multibody dynamics: rigid and flexible multibody system dynamics, impact and contact mechanics, tire modeling, railroad vehicle dynamics, computational multibody dynamics.