Sequence — Evolution — Function


Book Description

Sequence - Evolution - Function is an introduction to the computational approaches that play a critical role in the emerging new branch of biology known as functional genomics. The book provides the reader with an understanding of the principles and approaches of functional genomics and of the potential and limitations of computational and experimental approaches to genome analysis. Sequence - Evolution - Function should help bridge the "digital divide" between biologists and computer scientists, allowing biologists to better grasp the peculiarities of the emerging field of Genome Biology and to learn how to benefit from the enormous amount of sequence data available in the public databases. The book is non-technical with respect to the computer methods for genome analysis and discusses these methods from the user's viewpoint, without addressing mathematical and algorithmic details. Prior practical familiarity with the basic methods for sequence analysis is a major advantage, but a reader without such experience will be able to use the book as an introduction to these methods. This book is perfect for introductory level courses in computational methods for comparative and functional genomics.




Computational Genomics with R


Book Description

Computational Genomics with R provides a starting point for beginners in genomic data analysis and also guides more advanced practitioners to sophisticated data analysis techniques in genomics. The book covers topics from R programming, to machine learning and statistics, to the latest genomic data analysis techniques. The text provides accessible information and explanations, always with the genomics context in the background. This also contains practical and well-documented examples in R so readers can analyze their data by simply reusing the code presented. As the field of computational genomics is interdisciplinary, it requires different starting points for people with different backgrounds. For example, a biologist might skip sections on basic genome biology and start with R programming, whereas a computer scientist might want to start with genome biology. After reading: You will have the basics of R and be able to dive right into specialized uses of R for computational genomics such as using Bioconductor packages. You will be familiar with statistics, supervised and unsupervised learning techniques that are important in data modeling, and exploratory analysis of high-dimensional data. You will understand genomic intervals and operations on them that are used for tasks such as aligned read counting and genomic feature annotation. You will know the basics of processing and quality checking high-throughput sequencing data. You will be able to do sequence analysis, such as calculating GC content for parts of a genome or finding transcription factor binding sites. You will know about visualization techniques used in genomics, such as heatmaps, meta-gene plots, and genomic track visualization. You will be familiar with analysis of different high-throughput sequencing data sets, such as RNA-seq, ChIP-seq, and BS-seq. You will know basic techniques for integrating and interpreting multi-omics datasets. Altuna Akalin is a group leader and head of the Bioinformatics and Omics Data Science Platform at the Berlin Institute of Medical Systems Biology, Max Delbrück Center, Berlin. He has been developing computational methods for analyzing and integrating large-scale genomics data sets since 2002. He has published an extensive body of work in this area. The framework for this book grew out of the yearly computational genomics courses he has been organizing and teaching since 2015.




Computational Genome Analysis


Book Description

This book presents the foundations of key problems in computational molecular biology and bioinformatics. It focuses on computational and statistical principles applied to genomes, and introduces the mathematics and statistics that are crucial for understanding these applications. The book features a free download of the R software statistics package and the text provides great crossover material that is interesting and accessible to students in biology, mathematics, statistics and computer science. More than 100 illustrations and diagrams reinforce concepts and present key results from the primary literature. Exercises are given at the end of chapters.




Models and Algorithms for Genome Evolution


Book Description

This authoritative text/reference presents a review of the history, current status, and potential future directions of computational biology in molecular evolution. Gathering together the unique insights of an international selection of prestigious researchers, this must-read volume examines the latest developments in the field, the challenges that remain, and the new avenues emerging from the growing influx of sequence data. These viewpoints build upon the pioneering work of David Sankoff, one of the founding fathers of computational biology, and mark the 50th anniversary of his first scientific article. The broad spectrum of rich contributions in this essential collection will appeal to all computer scientists, mathematicians and biologists involved in comparative genomics, phylogenetics and related areas.




Computational Methods for Understanding Bacterial and Archaeal Genomes


Book Description

Over 500 prokaryotic genomes have been sequenced to date, and thousands more have been planned for the next few years. While these genomic sequence data provide unprecedented opportunities for biologists to study the world of prokaryotes, they also raise extremely challenging issues such as how to decode the rich information encoded in these genomes. This comprehensive volume includes a collection of cohesively written chapters on prokaryotic genomes, their organization and evolution, the information they encode, and the computational approaches needed to derive such information. A comparative view of bacterial and archaeal genomes, and how information is encoded differently in them, is also presented. Combining theoretical discussions and computational techniques, the book serves as a valuable introductory textbook for graduate-level microbial genomics and informatics courses.




Comparative Genomics


Book Description

A comprehensive account of genomic rearrangement, focusing on the mechanisms of inversion, translocation, gene and genome duplication and gene transfer and on the patterns that result from them in comparative maps. Includes analyses of genomic sequences in organelles, prokaryotes and eukaryotes as well as comparative maps of the nuclear genomes in higher plants and animals. The book showcases a variety of algorithmic and statistical approaches to rearrangement and map data.




Comparative Genomics


Book Description

This volume provides a collection of robust protocols for molecular biologists studying comparative genomics. Given the tremendous increase in available biosequence data over the past ten years, this volume is timely, comprehensive, and novel. The volume is intended for molecular biologists, biochemists and geneticists.




Advances in Computers


Book Description

The field of bioinformatics and computational biology arose due to the need to apply techniques from computer science, statistics, informatics, and applied mathematics to solve biological problems. Scientists have been trying to study biology at a molecular level using techniques derived from biochemistry, biophysics, and genetics. Progress has greatly accelerated with the discovery of fast and inexpensive automated DNA sequencing techniques. As the genomes of more and more organisms are sequenced and assembled, scientists are discovering many useful facts by tracing the evolution of organisms by measuring changes in their DNA, rather than through physical characteristics alone. This has led to rapid growth in the related fields of phylogenetics, the study of evolutionary relatedness among various groups of organisms, and comparative genomics, the study of the correspondence between genes and other genomic features in different organisms. Comparing the genomes of organisms has allowed researchers to better understand the features and functions of DNA in individual organisms, as well as provide insights into how organisms evolve over time. The first four chapters of Advances in Computers focus on algorithms for comparing the genomes of different organisms. Possible concrete applications include identifying the basis for genetic diseases and tracking the development and spread of different forms of Avian flu. As researchers begin to better understand the function of DNA, attention has begun shifting towards the actual proteins produced by DNA. The final two chapters explore proteomic techniques for analyzing proteins directly to identify their presence and understand their physical structure. - Written by active PhD researchers in computational biology and bioinformatics




Introduction to Computational Genomics


Book Description

Where did SARS come from? Have we inherited genes from Neanderthals? How do plants use their internal clock? The genomic revolution in biology enables us to answer such questions. But the revolution would have been impossible without the support of powerful computational and statistical methods that enable us to exploit genomic data. Many universities are introducing courses to train the next generation of bioinformaticians: biologists fluent in mathematics and computer science, and data analysts familiar with biology. This readable and entertaining book, based on successful taught courses, provides a roadmap to navigate entry to this field. It guides the reader through key achievements of bioinformatics, using a hands-on approach. Statistical sequence analysis, sequence alignment, hidden Markov models, gene and motif finding and more, are introduced in a rigorous yet accessible way. A companion website provides the reader with Matlab-related software tools for reproducing the steps demonstrated in the book.




Algorithms for Computational Biology


Book Description

This book constitutes the refereed proceedings of the First International Conference, AlCoB 2014, held in July 2014 in Tarragona, Spain. The 20 revised full papers were carefully reviewed and selected from 39 submissions. The scope of AlCoB includes topics of either theoretical or applied interest, namely: exact sequence analysis, approximate sequence analysis, pairwise sequence alignment, multiple sequence alignment, sequence assembly, genome rearrangement, regulatory motif finding, phylogeny reconstruction, phylogeny comparison, structure prediction, proteomics: molecular pathways, interaction networks, transcriptomics: splicing variants, isoform inference and quantification, differential analysis, next-generation sequencing: population genomics, metagenomics, metatranscriptomics, microbiome analysis, systems biology.