Computational Analysis of Communication


Book Description

Provides clear guidance on leveraging computational techniques to answer social science questions In disciplines such as political science, sociology, psychology, and media studies, the use of computational analysis is rapidly increasing. Statistical modeling, machine learning, and other computational techniques are revolutionizing the way electoral results are predicted, social sentiment is measured, consumer interest is evaluated, and much more. Computational Analysis of Communication teaches social science students and practitioners how computational methods can be used in a broad range of applications, providing discipline-relevant examples, clear explanations, and practical guidance. Assuming little or no background in data science or computer linguistics, this accessible textbook teaches readers how to use state-of-the art computational methods to perform data-driven analyses of social science issues. A cross-disciplinary team of authors—with expertise in both the social sciences and computer science—explains how to gather and clean data, manage textual, audio-visual, and network data, conduct statistical and quantitative analysis, and interpret, summarize, and visualize the results. Offered in a unique hybrid format that integrates print, ebook, and open-access online viewing, this innovative resource: Covers the essential skills for social sciences courses on big data, data visualization, text analysis, predictive analytics, and others Integrates theory, methods, and tools to provide unified approach to the subject Includes sample code in Python and links to actual research questions and cases from social science and communication studies Discusses ethical and normative issues relevant to privacy, data ownership, and reproducible social science Developed in partnership with the International Communication Association and by the editors of Computational Communication Research Computational Analysis of Communication is an invaluable textbook and reference for students taking computational methods courses in social sciences, and for professional social scientists looking to incorporate computational methods into their work.




Computational Methods for Communication Science


Book Description

Computational Methods for Communication Science showcases the use of innovative computational methods in the study of communication. This book discusses the validity of using big data in communication science and showcases a number of new methods and applications in the fields of text and network analysis. Computational methods have the potential to greatly enhance the scientific study of communication because they allow us to move towards collaborative large-N studies of actual behavior in its social context. This requires us to develop new skills and infrastructure and meet the challenges of open, valid, reliable, and ethical "big data" research. This volume brings together a number of leading scholars in this emerging field, contributing to the increasing development and adaptation of computational methods in communication science. The chapters in this book were originally published as a special issue of the journal Communication Methods and Measures.




Data Mining Methods for the Content Analyst


Book Description

This research reference introduces readers to the data mining technologies available for use in content analysis research. Supporting the increasingly popular trend of employing digital analysis methodologies in the humanities, arts, and social sciences, this work provides crucial answers for researchers who are not familiar with data mining approaches and who do not know what they can do, how they work, or how their strengths and weaknesses match up to the strengths and weaknesses of human coded content analysis data. Offering valuable insights and guidance for using automated analytical techniques in content analysis research, this guide will appeal to both novice and experienced researchers throughout the humanities, arts, and social sciences.




Computational Analysis of Storylines


Book Description

A review of recent computational (deep learning) approaches to understanding news and nonfiction stories.




Opportunities and Challenges for Computational Social Science Methods


Book Description

We are living in a digital era in which most of our daily activities take place online. This has created a big data phenomenon that has been subject to scientific research with increasingly available tools and processing power. As a result, a growing number of social science scholars are using computational methods for analyzing social behavior. To further the area, these evolving methods must be made known to sociological research scholars. Opportunities and Challenges for Computational Social Science Methods focuses on the implementation of social science methods and the opportunities and challenges of these methods. This book sheds light on the infrastructure that should be built to gain required skillsets, the tools used in computational social sciences, and the methods developed and applied into computational social sciences. Covering topics like computational communication, ecological cognition, and natural language processing, this book is an essential resource for researchers, data scientists, scholars, students, professors, sociologists, and academicians.




Foundations of Computational Linguistics


Book Description

The central task of future-oriented computational linguistics is the development of cognitive machines which humans can freely speak to in their natural language. This will involve the development of a functional theory of language, an objective method of verification, and a wide range of practical applications. Natural communication requires not only verbal processing, but also non-verbal perception and action. Therefore, the content of this book is organized as a theory of language for the construction of talking robots with a focus on the mechanics of natural language communication in both the listener and the speaker.




Computational Intelligence in Recent Communication Networks


Book Description

This book focuses on the use of Artificial Intelligence and Machine Learning (AI/ML) based techniques to solve issues related to communication networks, their layers, as well as their applications. The book first offers an introduction to recent trends regarding communication networks. The authors then provide an overview of theoretical concepts of AI/ML, techniques and protocols used in different layers of communication. Furthermore, this book presents solutions that help analyze complex patterns in user data and ultimately improve productivity. Throughout, AI/ML-based solutions are provided, for topics such as signal detection, channel modeling, resource optimization, routing protocol design, transport layer optimization, user/application behavior prediction, software-defined networking, congestion control, communication network optimization, security, and anomaly detection. The book features chapters from a large spectrum of authors including researchers, students, as well as industrials involved in research and development.




Advances in Communication and Computational Technology


Book Description

This book presents high-quality peer-reviewed papers from the International Conference on Advanced Communication and Computational Technology (ICACCT) 2019 held at the National Institute of Technology, Kurukshetra, India. The contents are broadly divided into four parts: (i) Advanced Computing, (ii) Communication and Networking, (iii) VLSI and Embedded Systems, and (iv) Optimization Techniques.The major focus is on emerging computing technologies and their applications in the domain of communication and networking. The book will prove useful for engineers and researchers working on physical, data link and transport layers of communication protocols. Also, this will be useful for industry professionals interested in manufacturing of communication devices, modems, routers etc. with enhanced computational and data handling capacities.




Computation for Humanity


Book Description

The exponential progress and accessibility of computing has vastly increased data flows and revolutionized the practice of science, engineering, and communication. Computing plays a critical role in advancing research across almost every scientific discipline. Computation for Humanity: Information Technology to Advance Society is a guide for the creation of services, products, and tools that facilitate, support, and enhance progress of humanity toward more sustainable life. This book: Provides a deep understanding of the practical applications of computation to solve human-machine problems Delivers insight into theoretical approaches in an accessible manner Provides a comprehensive overview of computational science and engineering applications in selected disciplines Crosses the boundaries between different domains and shows how they interrelate and complement one another Focuses on grand challenges and issues that matter for the future of humanity Shows different perspectives of computational thinking, understanding, and reasoning Provides a basis for scientific discoveries and enables adopting scientific theories and engineering practices from other disciplines Takes a step back to provide a human-related abstraction level that is not ultimately seen in pure technological elaborations/collections The editors provide a collection of numerous computation-related projects that form a foundation from which to cross-pollinate between different disciplines and further extensive collaboration. They present a clear and profound understanding of computing in today's world, and provide fundamental solutions to some of the most pertinent humanity-related problems.




Computational Information Geometry


Book Description

This book focuses on the application and development of information geometric methods in the analysis, classification and retrieval of images and signals. It provides introductory chapters to help those new to information geometry and applies the theory to several applications. This area has developed rapidly over recent years, propelled by the major theoretical developments in information geometry, efficient data and image acquisition and the desire to process and interpret large databases of digital information. The book addresses both the transfer of methodology to practitioners involved in database analysis and in its efficient computational implementation.