Computational Modeling of Masonry Structures Using the Discrete Element Method


Book Description

The Discrete Element Method (DEM) has emerged as a solution to predicting load capacities of masonry structures. As one of many numerical methods and computational solutions being applied to evaluate masonry structures, further research on DEM tools and methodologies is essential for further advancement. Computational Modeling of Masonry Structures Using the Discrete Element Method explores the latest digital solutions for the analysis and modeling of brick, stone, concrete, granite, limestone, and glass block structures. Focusing on critical research on mathematical and computational methods for masonry analysis, this publication is a pivotal reference source for scholars, engineers, consultants, and graduate-level engineering students.




Multiscale Modeling in Solid Mechanics


Book Description

This unique volume presents the state of the art in the field of multiscale modeling in solid mechanics, with particular emphasis on computational approaches. For the first time, contributions from both leading experts in the field and younger promising researchers are combined to give a comprehensive description of the recently proposed techniques and the engineering problems tackled using these techniques. The book begins with a detailed introduction to the theories on which different multiscale approaches are based, with regards to linear Homogenisation as well as various nonlinear approaches. It then presents advanced applications of multiscale approaches applied to nonlinear mechanical problems. Finally, the novel topic of materials with self-similar structure is discussed. Sample Chapter(s). Chapter 1: Computational Homogenisation for Non-Linear Heterogeneous Solids (808 KB). Contents: Computational Homogenisation for Non-Linear Heterogeneous Solids (V G Kouznetsova et al.); Two-Scale Asymptotic Homogenisation-Based Finite Element Analysis of Composite Materials (Q-Z Xiao & B L Karihaloo); Multi-Scale Boundary Element Modelling of Material Degradation and Fracture (G K Sfantos & M H Aliabadi); Non-Uniform Transformation Field Analysis: A Reduced Model for Multiscale Non-Linear Problems in Solid Mechanics (J-C Michel & P Suquet); Multiscale Approach for the Thermomechanical Analysis of Hierarchical Structures (M J Lefik et al.); Recent Advances in Masonry Modelling: Micro-Modelling and Homogenisation (P B Louren o); Mechanics of Materials with Self-Similar Hierarchical Microstructure (R C Picu & M A Soare). Readership: Researchers and academics in the field of heterogeneous materials and mechanical engineering; professionals in aeronautical engineering and materials science.




The Combined Finite-Discrete Element Method


Book Description

The combined finite discrete element method is a relatively new computational tool aimed at problems involving static and / or dynamic behaviour of systems involving a large number of solid deformable bodies. Such problems include fragmentation using explosives (e.g rock blasting), impacts, demolition (collapsing buildings), blast loads, digging and loading processes, and powder technology. The combined finite-discrete element method - a natural extension of both discrete and finite element methods - allows researchers to model problems involving the deformability of either one solid body, a large number of bodies, or a solid body which fragments (e.g. in rock blasting applications a more or less intact rock mass is transformed into a pile of solid rock fragments of different sizes, which interact with each other). The topic is gaining in importance, and is at the forefront of some of the current efforts in computational modeling of the failure of solids. * Accompanying source codes plus input and output files available on the Internet * Important applications such as mining engineering, rock blasting and petroleum engineering * Includes practical examples of applications areas Essential reading for postgraduates, researchers and software engineers working in mechanical engineering.




Recent Advances in Computational and Experimental Mechanics, Vol—I


Book Description

This book (Vol. - I) presents select proceedings of the first Online International Conference on Recent Advances in Computational and Experimental Mechanics (ICRACEM 2020) and focuses on theoretical, computational and experimental aspects of solid and fluid mechanics. Various topics covered are computational modelling of extreme events; mechanical modelling of robots; mechanics and design of cellular materials; mechanics of soft materials; mechanics of thin-film and multi-layer structures; meshfree and particle based formulations in continuum mechanics; multi-scale computations in solid mechanics, and materials; multiscale mechanics of brittle and ductile materials; topology and shape optimization techniques; acoustics including aero-acoustics and wave propagation; aerodynamics; dynamics and control in micro/nano engineering; dynamic instability and buckling; flow-induced noise and vibration; inverse problems in mechanics and system identification; measurement and analysis techniques in nonlinear dynamic systems; multibody dynamical systems and applications; nonlinear dynamics and control; stochastic mechanics; structural dynamics and earthquake engineering; structural health monitoring and damage assessment; turbomachinery noise; vibrations of continuous systems, characterization of advanced materials; damage identification and non-destructive evaluation; experimental fire mechanics and damage; experimental fluid mechanics; experimental solid mechanics; measurement in extreme environments; modal testing and dynamics; experimental hydraulics; mechanism of scour under steady and unsteady flows; vibration measurement and control; bio-inspired materials; constitutive modelling of materials; fracture mechanics; mechanics of adhesion, tribology and wear; mechanics of composite materials; mechanics of multifunctional materials; multiscale modelling of materials; phase transformations in materials; plasticity and creep in materials; fluid mechanics, computational fluid dynamics; fluid-structure interaction; free surface, moving boundary and pipe flow; hydrodynamics; multiphase flows; propulsion; internal flow physics; turbulence modelling; wave mechanics; flow through porous media; shock-boundary layer interactions; sediment transport; wave-structure interaction; reduced-order models; turbo-machinery; experimental hydraulics; mechanism of scour under steady and unsteady flows; applications of machine learning and artificial intelligence in mechanics; transport phenomena and soft computing tools in fluid mechanics. The contents of these two volumes (Volumes I and II) discusses various attributes of modern-age mechanics in various disciplines, such as aerospace, civil, mechanical, ocean engineering and naval architecture. The book will be a valuable reference for beginners, researchers, and professionals interested in solid and fluid mechanics and allied fields.




Numerical Modeling of Masonry and Historical Structures


Book Description

Numerical Modeling of Masonry and Historical Structures: From Theory to Application provides detailed information on the theoretical background and practical guidelines for numerical modeling of unreinforced and reinforced (strengthened) masonry and historical structures. The book consists of four main sections, covering seismic vulnerability analysis of masonry and historical structures, numerical modeling of unreinforced masonry, numerical modeling of FRP-strengthened masonry, and numerical modeling of TRM-strengthened masonry. Each section reflects the theoretical background and current state-of-the art, providing practical guidelines for simulations and the use of input parameters. - Covers important issues relating to advanced methodologies for the seismic vulnerability assessment of masonry and historical structures - Focuses on modeling techniques used for the nonlinear analysis of unreinforced masonry and strengthened masonry structures - Follows a theory to practice approach




The Stone Skeleton


Book Description

Cambridge's Jacques Heyman provides a thorough and intuitive understanding of masonry structures, such as arch bridges, Greek temples, and Gothic cathedrals. Although his approach is firmly scientific, Heyman does not use complex mathematics. Instead, he introduces the basis of masonry analysis, then considers individual structures, through lucid and informative text. 5 photos. 100 line diagrams. 3 tables.




Proceedings of XXIV AIMETA Conference 2019


Book Description

This book gathers the peer-reviewed papers presented at the XXIV Conference of the Italian Association of Theoretical and Applied Mechanics, held in Rome, Italy, on September 15-19, 2019 (AIMETA 2019). The conference topics encompass all aspects of general, fluid, solid and structural mechanics, as well as mechanics for machines and mechanical systems, including theoretical, computational and experimental techniques and technological applications. As such the book represents an invaluable, up-to-the-minute tool, providing an essential overview of the most recent advances in the field.




Structural Analysis of Historical Constructions


Book Description

This volume contains the proceedings of the 11th International Conference on Structural Analysis of Historical Constructions (SAHC) that was held in Cusco, Peru in 2018. It disseminates recent advances in the areas related to the structural analysis of historical and archaeological constructions. The challenges faced in this field show that accuracy and robustness of results rely heavily on an interdisciplinary approach, where different areas of expertise from managers, practitioners, and scientists work together. Bearing this in mind, SAHC 2018 stimulated discussion on the new knowledge developed in the different disciplines involved in analysis, conservation, retrofit, and management of existing constructions. This book is organized according to the following topics: assessment and intervention of archaeological heritage, history of construction and building technology, advances in inspection and NDT, innovations in field and laboratory testing applied to historical construction and heritage, new technologies and techniques, risk and vulnerability assessments of heritage for multiple types of hazards, repair, strengthening, and retrofit of historical structures, numerical modeling and structural analysis, structural health monitoring, durability and sustainability, management and conservation strategies for heritage structures, and interdisciplinary projects and case studies. This volume holds particular interest for all the community interested in the challenging task of preserving existing constructions, enable great opportunities, and also uncover new challenges in the field of structural analysis of historical and archeological constructions.







Insights and Innovations in Structural Engineering, Mechanics and Computation


Book Description

Insights and Innovations in Structural Engineering, Mechanics and Computation comprises 360 papers that were presented at the Sixth International Conference on Structural Engineering, Mechanics and Computation (SEMC 2016, Cape Town, South Africa, 5-7 September 2016). The papers reflect the broad scope of the SEMC conferences, and cover a wide range of engineering structures (buildings, bridges, towers, roofs, foundations, offshore structures, tunnels, dams, vessels, vehicles and machinery) and engineering materials (steel, aluminium, concrete, masonry, timber, glass, polymers, composites, laminates, smart materials). Some contributions present the latest insights and new understanding on (i) the mechanics of structures and systems (dynamics, vibration, seismic response, instability, buckling, soil-structure interaction), and (ii) the mechanics of materials and fluids (elasticity, plasticity, fluid-structure interaction, flow through porous media, biomechanics, fracture, fatigue, bond, creep, shrinkage). Other contributions report on (iii) recent advances in computational modelling and testing (numerical simulations, finite-element modeling, experimental testing), and (iv) developments and innovations in structural engineering (planning, analysis, design, construction, assembly, maintenance, repair and retrofitting of structures). Insights and Innovations in Structural Engineering, Mechanics and Computation is particularly of interest to civil, structural, mechanical, marine and aerospace engineers. Researchers, developers, practitioners and academics in these disciplines will find the content useful. Short versions of the papers, intended to be concise but self-contained summaries of the full papers, are collected in the book, while the full versions of the papers are on the accompanying CD.