Computational and Experimental Group Theory


Book Description

The focus of algorithmic group theory shifted from the decidability/undecidability type of result to the complexity of algorithms. This title contains papers that reflect that paradigm shift. It presents articles that are based on the AMS/ASL Joint Special Session, Interactions Between Logic, Group Theory and Computer Science.




Handbook of Computational Group Theory


Book Description

The origins of computation group theory (CGT) date back to the late 19th and early 20th centuries. Since then, the field has flourished, particularly during the past 30 to 40 years, and today it remains a lively and active branch of mathematics. The Handbook of Computational Group Theory offers the first complete treatment of all the fundame




Group Theory and Computation


Book Description

This book is a blend of recent developments in theoretical and computational aspects of group theory. It presents the state-of-the-art research topics in different aspects of group theory, namely, character theory, representation theory, integral group rings, the Monster simple group, computational algorithms and methods on finite groups, finite loops, periodic groups, Camina groups and generalizations, automorphisms and non-abelian tensor product of groups. Presenting a collection of invited articles by some of the leading and highly active researchers in the theory of finite groups and their representations and the Monster group, with a focus on computational aspects, this book is of particular interest to researchers in the area of group theory and related fields of mathematics.




Computational and Statistical Group Theory


Book Description

This book gives a nice overview of the diversity of current trends in computational and statistical group theory. It presents the latest research and a number of specific topics, such as growth, black box groups, measures on groups, product replacement algorithms, quantum automata, and more. It includes contributions by speakers at AMS Special Sessions at The University of Nevada (Las Vegas) and the Stevens Institute of Technology (Hoboken, NJ). It is suitable for graduate students and research mathematicians interested in group theory.




Representations of Groups


Book Description

The representation theory of finite groups has seen rapid growth in recent years with the development of efficient algorithms and computer algebra systems. This is the first book to provide an introduction to the ordinary and modular representation theory of finite groups with special emphasis on the computational aspects of the subject. Evolving from courses taught at Aachen University, this well-paced text is ideal for graduate-level study. The authors provide over 200 exercises, both theoretical and computational, and include worked examples using the computer algebra system GAP. These make the abstract theory tangible and engage students in real hands-on work. GAP is freely available from www.gap-system.org and readers can download source code and solutions to selected exercises from the book's web page.




Groups, Languages, Algorithms


Book Description

Since the pioneering works of Novikov and Maltsev, group theory has been a testing ground for mathematical logic in its many manifestations, from the theory of algorithms to model theory. The interaction between logic and group theory led to many prominent results which enriched both disciplines. This volume reflects the major themes of the American Mathematical Society/Association for Symbolic Logic Joint Special Session (Baltimore, MD), Interactions between Logic, Group Theory and Computer Science. Included are papers devoted to the development of techniques used for the interaction of group theory and logic. It is suitable for graduate students and researchers interested in algorithmic and combinatorial group theory. A complement to this work is Volume 349 in the AMS series, Contemporary Mathematics, Computational and Experimental Group Theory, which arose from the same meeting and concentrates on the interaction of group theory and computer science.




Computational Group Theory and the Theory of Groups, II


Book Description

This volume consists of contributions by researchers who were invited to the Harlaxton Conference on Computational Group Theory and Cohomology, held in August of 2008, and to the AMS Special Session on Computational Group Theory, held in October 2008. This volume showcases examples of how Computational Group Theory can be applied to a wide range of theoretical aspects of group theory. Among the problems studied in this book are classification of p-groups, covers of Lie groups, resolutions of Bieberbach groups, and the study of the lower central series of free groups. This volume also includes expository articles on the probabilistic zeta function of a group and on enumerating subgroups of symmetric groups. Researchers and graduate students working in all areas of Group Theory will find many examples of how Computational Group Theory helps at various stages of the research process, from developing conjectures through the verification stage. These examples will suggest to the mathematician ways to incorporate Computational Group Theory into their own research endeavors.




Computational Group Theory and the Theory of Groups


Book Description

The power of general purpose computational algebra systems running on personal computers has increased rapidly in recent years. For mathematicians doing research in group theory, this means a growing set of sophisticated computational tools are now available for their use in developing new theoretical results. This volume consists of contributions by researchers invited to the AMS Special Session on Computational Group Theory held in March 2007. The main focus of the session was on the application of Computational Group Theory (CGT) to a wide range of theoretical aspects of group theory. The articles in this volume provide a variety of examples of how these computer systems helped to solve interesting theoretical problems within the discipline, such as constructions of finite simple groups, classification of $p$-groups via coclass, representation theory and constructions involving free nilpotent groups. The volume also includes an article by R. F. Morse highlighting applications of CGT in group theory and two survey articles. Graduate students and researchers interested in various aspects of group theory will find many examples of Computational Group Theory helping research and will recognize it as yet another tool at their disposal.




Computational Group Theory and the Theory of Groups


Book Description

"The power of general purpose computational algebra systems running on personal computers has increased rapidly in recent years. For mathematicians doing research in group theory, this means a growing set of sophisticated computational tools are now available for their use in developing new theoretical results." "This volume consists of contributions by researchers invited to the AMS Special Session on Computational Group Theory held in March 2007. The main focus of the session was on the application of Computational Group Theory (CGT) to a wide range of theoretical aspects of group theory. The articles in this volume provide a variety of examples of how these computer systems helped to solve interesting theoretical problems within the discipline, such as constructions of finite simple groups, classification of $p$-groups via coclass, representation theory and constructions involving free nilpotent groups. The volume also includes an article by R. F. Morse highlighting applications of CGT in group theory and two survey articles." "Graduate students and researchers interested in various aspects of group theory will find many examples of Computational Group Theory helping research and will recognize it as yet another tool at their disposal."--BOOK JACKET.




Mathematics and Computation


Book Description

An introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography