Programming Collective Intelligence


Book Description

Want to tap the power behind search rankings, product recommendations, social bookmarking, and online matchmaking? This fascinating book demonstrates how you can build Web 2.0 applications to mine the enormous amount of data created by people on the Internet. With the sophisticated algorithms in this book, you can write smart programs to access interesting datasets from other web sites, collect data from users of your own applications, and analyze and understand the data once you've found it. Programming Collective Intelligence takes you into the world of machine learning and statistics, and explains how to draw conclusions about user experience, marketing, personal tastes, and human behavior in general -- all from information that you and others collect every day. Each algorithm is described clearly and concisely with code that can immediately be used on your web site, blog, Wiki, or specialized application. This book explains: Collaborative filtering techniques that enable online retailers to recommend products or media Methods of clustering to detect groups of similar items in a large dataset Search engine features -- crawlers, indexers, query engines, and the PageRank algorithm Optimization algorithms that search millions of possible solutions to a problem and choose the best one Bayesian filtering, used in spam filters for classifying documents based on word types and other features Using decision trees not only to make predictions, but to model the way decisions are made Predicting numerical values rather than classifications to build price models Support vector machines to match people in online dating sites Non-negative matrix factorization to find the independent features in a dataset Evolving intelligence for problem solving -- how a computer develops its skill by improving its own code the more it plays a game Each chapter includes exercises for extending the algorithms to make them more powerful. Go beyond simple database-backed applications and put the wealth of Internet data to work for you. "Bravo! I cannot think of a better way for a developer to first learn these algorithms and methods, nor can I think of a better way for me (an old AI dog) to reinvigorate my knowledge of the details." -- Dan Russell, Google "Toby's book does a great job of breaking down the complex subject matter of machine-learning algorithms into practical, easy-to-understand examples that can be directly applied to analysis of social interaction across the Web today. If I had this book two years ago, it would have saved precious time going down some fruitless paths." -- Tim Wolters, CTO, Collective Intellect




Computational Collective Intelligence. Semantic Web, Social Networks and Multiagent Systems


Book Description

Computational collective intelligence (CCI) is most often understood as a subfield of artificial intelligence (AI) dealing with soft computing methods that enable group decisions to be made or knowledge to be processed among autonomous units acting in distributed environments. The needs for CCI techniques and tools have grown signi- cantly recently as many information systems work in distributed environments and use distributed resources. Web-based systems, social networks and multi-agent systems very often need these tools for working out consistent knowledge states, resolving conflicts and making decisions. Therefore, CCI is of great importance for today’s and future distributed systems. Methodological, theoretical and practical aspects of computational collective int- ligence, such as group decision making, collective action coordination, and knowledge integration, are considered as the form of intelligence that emerges from the collabo- tion and competition of many individuals (artificial and/or natural). The application of multiple computational intelligence technologies such as fuzzy systems, evolutionary computation, neural systems, consensus theory, etc. , can support human and other collective intelligence and create new forms of CCI in natural and/or artificial s- tems.




New Trends in Computational Collective Intelligence


Book Description

This book consists of 20 chapters in which the authors deal with different theoretical and practical aspects of new trends in Collective Computational Intelligence techniques. Computational Collective Intelligence methods and algorithms are one the current trending research topics from areas related to Artificial Intelligence, Soft Computing or Data Mining among others. Computational Collective Intelligence is a rapidly growing field that is most often understood as an AI sub-field dealing with soft computing methods which enable making group decisions and processing knowledge among autonomous units acting in distributed environments. Web-based Systems, Social Networks, and Multi-Agent Systems very often need these tools for working out consistent knowledge states, resolving conflicts and making decisions. The chapters included in this volume cover a selection of topics and new trends in several domains related to Collective Computational Intelligence: Language and Knowledge Processing, Data Mining Methods and Applications, Computer Vision, and Intelligent Computational Methods. This book will be useful for graduate and PhD students in computer science as well as for mature academics, researchers and practitioners interested in the methods and applications of collective computational intelligence in order to create new intelligent systems.




Computational Collective Intelligence


Book Description

This two-volume set (LNAI 11683 and LNAI 11684) constitutes the refereed proceedings of the 11th International Conference on Computational Collective Intelligence, ICCCI 2019, held in Hendaye France, in September 2019.The 117 full papers presented were carefully reviewed and selected from 200 submissions. The papers are grouped in topical sections on: computational collective intelligence and natural language processing; machine learning in real-world data; distributed collective intelligence for smart manufacturing; collective intelligence for science and technology; intelligent management information systems; intelligent sustainable smart cities; new trends and challenges in education: the university 4.0; intelligent processing of multimedia in web systems; and big data streaming, applications and security.




Social Collective Intelligence


Book Description

The book focuses on Social Collective Intelligence, a term used to denote a class of socio-technical systems that combine, in a coordinated way, the strengths of humans, machines and collectives in terms of competences, knowledge and problem solving capabilities with the communication, computing and storage capabilities of advanced ICT. Social Collective Intelligence opens a number of challenges for researchers in both computer science and social sciences; at the same time it provides an innovative approach to solve challenges in diverse application domains, ranging from health to education and organization of work. The book will provide a cohesive and holistic treatment of Social Collective Intelligence, including challenges emerging in various disciplines (computer science, sociology, ethics) and opportunities for innovating in various application areas. By going through the book the reader will gauge insight and knowledge into the challenges and opportunities provided by this new, exciting, field of investigation. Benefits for scientists will be in terms of accessing a comprehensive treatment of the open research challenges in a multidisciplinary perspective. Benefits for practitioners and applied researchers will be in terms of access to novel approaches to tackle relevant problems in their field. Benefits for policy-makers and public bodies representatives will be in terms of understanding how technological advances can support them in supporting the progress of society and economy.




Handbook of Collective Intelligence


Book Description

Experts describe the latest research in a rapidly growing multidisciplinary field, the study of groups of individuals acting collectively in ways that seem intelligent. Intelligence does not arise only in individual brains; it also arises in groups of individuals. This is collective intelligence: groups of individuals acting collectively in ways that seem intelligent. In recent years, a new kind of collective intelligence has emerged: interconnected groups of people and computers, collectively doing intelligent things. Today these groups are engaged in tasks that range from writing software to predicting the results of presidential elections. This volume reports on the latest research in the study of collective intelligence, laying out a shared set of research challenges from a variety of disciplinary and methodological perspectives. Taken together, these essays—by leading researchers from such fields as computer science, biology, economics, and psychology—lay the foundation for a new multidisciplinary field. Each essay describes the work on collective intelligence in a particular discipline—for example, economics and the study of markets; biology and research on emergent behavior in ant colonies; human-computer interaction and artificial intelligence; and cognitive psychology and the “wisdom of crowds” effect. Other areas in social science covered include social psychology, organizational theory, law, and communications. Contributors Eytan Adar, Ishani Aggarwal, Yochai Benkler, Michael S. Bernstein, Jeffrey P. Bigham, Jonathan Bragg, Deborah M. Gordon, Benjamin Mako Hill, Christopher H. Lin, Andrew W. Lo, Thomas W. Malone, Mausam, Brent Miller, Aaron Shaw, Mark Steyvers, Daniel S. Weld, Anita Williams Woolley




Computational Collective Intelligence. Technologies and Applications


Book Description

This book constitutes the thoroughly refereed conference proceedings of the 5th International Conference on Computational Collective Intelligence, ICCCI 2013, held in Craiova, Romania, in September 2013. The 72 revised full papers presented were carefully selected from numerous submissions. Conference papers are organized in 16 technical sessions, covering the following topics: intelligent e-learning, classification and clustering methods, web intelligence and interaction, agents and multi-agent systems, social networks, intelligent knowledge management, language processing systems, modeling and optimization techniques, evolutionary computation, intelligent and group decision making, swarm intelligence, data mining techniques and applications, cooperative problem solving, collective intelligence for text mining and innovation, collective intelligence for social understanding and mining, and soft methods in collective intelligence.




Computational Collective Intelligence. Technologies and Applications


Book Description

This volume composes the proceedings of the Second International Conference on Computational Collective Intelligence––Technologies and Applications (ICCCI 2010), which was hosted by National Kaohsiung University of Applied Sciences and Wroclaw University of Technology, and was held in Kaohsiung City on November 10-12, 2010. ICCCI 2010 was technically co-sponsored by Shenzhen Graduate School of Harbin Institute of Technology, the Tainan Chapter of the IEEE Signal Processing Society, the Taiwan Association for Web Intelligence Consortium and the Taiwanese Association for Consumer Electronics. It aimed to bring together researchers, engineers and po- cymakers to discuss the related techniques, to exchange research ideas, and to make friends. ICCCI 2010 focused on the following themes: • Agent Theory and Application • Cognitive Modeling of Agent Systems • Computational Collective Intelligence • Computer Vision • Computational Intelligence • Hybrid Systems • Intelligent Image Processing • Information Hiding • Machine Learning • Social Networks • Web Intelligence and Interaction




Computational Collective Intelligence. Technologies and Applications


Book Description

The two volumes set LNCS 7653 and 7654 constitutes the refereed proceedings of the 4th International Conference on Computational Collective Intelligence, ICCCI, held in Ho Chi Minh City, Vietnam, in November 2012. The 113 revised full papers presented were carefully reviewed and selected from 397 submissions. The papers are organized in topical sections on (Part I) knowledge integration; data mining for collective processing; fuzzy, modal, and collective systems; nature inspired systems; language processing systems; social networks and semantic web; agent and multi-agent systems; classification and clustering methods; modeling and optimization techniques for business intelligence; (Part II) multi-dimensional data processing; web systems; intelligent decision making; methods for scheduling; collective intelligence in web systems – web systems analysis; advanced data mining techniques and applications; cooperative problem solving; computational swarm intelligence; and semantic methods for knowledge discovery and communication




Computational Collective Intelligence -- Technologies and Applications


Book Description

This book constitutes the refereed proceedings of the 6th International Conference on Collective Intelligence, ICCCI 2014, held in Seoul, Korea, in September 2014. The 70 full papers presented were carefully reviewed and selected from 205 submissions. They address topics such as knowledge integration, data mining for collective processing, fuzzy, modal and collective systems, nature inspired systems, language processing systems, social networks and semantic web, agent and multi-agent systems, classification and clustering methods, multi-dimensional data processing, Web systems, intelligent decision making, methods for scheduling, image and video processing, collective intelligence in web systems, computational swarm intelligence, cooperation and collective knowledge.