Low Complexity Scalable Video Encoding


Book Description

The emerging Scalable Video Coding (SVC) extends the H.264/AVC video coding standard with new tools designed to efficiently support temporal, spatial and SNR scalability. In real-time multimedia systems, the coding performance of video encoders and decoders is limited by computational complexity. This thesis presents techniques to manage computational complexity of H.264/AVC and SVC video encoders. These techniques aim to provide significant complexity saving as well as a framework for efficient use of SVC. This thesis first investigates, experimentally, the computational complexity of MB coding mode decision in H.264/AVC video encoder. Based on machine learning techniques, complexity reduction algorithms are proposed. It is shown that these algorithms can reduce the computational complexity of Intra MB coding with negligible loss of video quality. Complexity reduction algorithms based on statistical classifiers are proposed for SVC encoder. It is shown that these algorithms can flexibly control the computational complexity in enhancement layers of SVC with negligible loss of video quality. The inherent relationship of MB mode decision in base and enhancement layers of SVC is investigated through experimental tests and a rate model function is proposed. An innovative fast mode decision model is developed to reduce the computational complexity by using the layer relationship along with the rate model function. We develop a general framework that applies to SVC and use this framework to adapt SVC bitstream by employing the low-complexity video encoding along with the input of video streaming constraints in order to adapt the bitstream. The proposed SVC based framework uses both objective low-complexity video encoding techniques and subjective saliency based video adaptation resulting in optimal use of network bandwidth. The approaches described in this thesis can not only reduce computational complexity of a video encoder, but also can manage the trade-off between complexity and distortion. These proposed algorithms are evaluated in terms of complexity reduction performance, rate-distortion performance and subjective and objective visual quality by experimental testing. The advantages and disadvantages of each algorithm are discussed.




Complexity-Aware High Efficiency Video Coding


Book Description

This book discusses computational complexity of High Efficiency Video Coding (HEVC) encoders with coverage extending from the analysis of HEVC compression efficiency and computational complexity to the reduction and scaling of its encoding complexity. After an introduction to the topic and a review of the state-of-the-art research in the field, the authors provide a detailed analysis of the HEVC encoding tools compression efficiency and computational complexity. Readers will benefit from a set of algorithms for scaling the computational complexity of HEVC encoders, all of which take advantage from the flexibility of the frame partitioning structures allowed by the standard. The authors also provide a set of early termination methods based on data mining and machine learning techniques, which are able to reduce the computational complexity required to find the best frame partitioning structures. The applicability of the proposed methods is finally exemplified with an encoding time control system that employs the best complexity reduction and scaling methods presented throughout the book. The methods presented in this book are especially useful in power-constrained, portable multimedia devices to reduce energy consumption and to extend battery life. They can also be applied to portable and non-portable multimedia devices operating in real time with limited computational resources.




Recent Advances on Video Coding


Book Description

This book is intended to attract the attention of practitioners and researchers from industry and academia interested in challenging paradigms of multimedia video coding, with an emphasis on recent technical developments, cross-disciplinary tools and implementations. Given its instructional purpose, the book also overviews recently published video coding standards such as H.264/AVC and SVC from a simulational standpoint. Novel rate control schemes and cross-disciplinary tools for the optimization of diverse aspects related to video coding are also addressed in detail, along with implementation architectures specially tailored for video processing and encoding. The book concludes by exposing new advances in semantic video coding. In summary: this book serves as a technically sounding start point for early-stage researchers and developers willing to join leading-edge research on video coding, processing and multimedia transmission.







Effective Video Coding for Multimedia Applications


Book Description

Information has become one of the most valuable assets in the modern era. Within the last 5-10 years, the demand for multimedia applications has increased enormously. Like many other recent developments, the materialization of image and video encoding is due to the contribution from major areas like good network access, good amount of fast processors e.t.c. Many standardization procedures were carrried out for the development of image and video coding. The advancement of computer storage technology continues at a rapid pace as a means of reducing storage requirements of an image and video as most situation warrants. Thus, the science of digital video compression/coding has emerged. This storage capacity seems to be more impressive when it is realized that the intent is to deliver very high quality video to the end user with as few visible artifacts as possible. Current methods of video compression such as Moving Pictures Experts Group (MPEG) standard provide good performance in terms of retaining video quality while reducing the storage requirements. Many books are available for video coding fundamentals.This book is the research outcome of various Researchers and Professors who have contributed a might in this field. This book suits researchers doing their research in the area of video coding.The understanding of fundamentals of video coding is essential for the reader before reading this book. The book revolves around three different challenges namely (i) Coding strategies (coding efficiency and computational complexity), (ii) Video compression and (iii) Error resilience. The complete efficient video system depends upon source coding, proper inter and intra frame coding, emerging newer transform, quantization techniques and proper error concealment.The book gives the solution of all the challenges and is available in different sections.




International Proceedings on Advances in Soft Computing, Intelligent Systems and Applications


Book Description

The book focuses on the state-of-the-art technologies pertaining to advances in soft computing, intelligent system and applications. The Proceedings of ASISA 2016 presents novel and original work in soft computing, intelligent system and applications by the experts and budding researchers. These are the cutting edge technologies that have immense application in various fields. The papers discuss many real world complex problems that cannot be easily handled with traditional mathematical methods. The exact solution of the problems at hand can be achieved with soft computing techniques. Soft computing represents a collection of computational techniques inheriting inspiration from evolutionary algorithms, nature inspired algorithms, bio-inspired algorithms, neural networks and fuzzy logic.




Power and Distortion Optimized Video Coding for Pervasive Computing Applications


Book Description

This dissertation investigates video encoding schemes for pervasive computing applications that must ensure low power consumption in addition to high compression efficiency. The contribution of the dissertation is the formulation of a theoretical problem that captures the joint optimization of power and distortion in video coding. The study of the complexity distribution of typical video encoders helps to develop a complexity-scalable video encoding architecture that includes several control parameters to adjust the power consumption of the major modules of the encoder. An analytic framework to model, control and optimize the power-rate-distortion is developed, which facilitates the development of optimization schemes to determine the best configuration of the complexity control parameters according to either or both the power supply level of the device and the video presentation quality. The dissertation proposes complexity control schemes that dynamically adjust the control parameters. Using extensive simulations on an instruction set simulator, the accuracy of the model, and quality of the optimization schemes are investigated. For additional performance improvement, we propose algorithms that exploit the video content to reduce the power consumption and improve the video quality. This is done by obtaining and maintaining the "motion history" of a video sequence in a hierarchical fashion. By adaptively adjusting the complexity parameters according to the motion history information gained from the video sequence, the power is saved when the scene has little motion and consumed when the motion activity increases. Extensive experiments have been performed to show the validity and merits of the proposed techniques.




Low-complexity Mode Selection for Rate-distortion Optimal Video Coding


Book Description

In addition to our theoretical work, we present practical solutions to real-time implementation of encoder modules including our proposed mode selection method on digital signal processors. First, we investigate the features provided by most of the recent digital signal processors, for example, hierarchical memory structure and efficient data transfer between on-chip and off-chip memory, and then present practical approaches for real-time implementation of a video encoder system with efficient use of the features.