Computational Economics


Book Description

Computational Economics: A concise introduction is a comprehensive textbook designed to help students move from the traditional and comparative static analysis of economic models, to a modern and dynamic computational study. The ability to equate an economic problem, to formulate it into a mathematical model and to solve it computationally is becoming a crucial and distinctive competence for most economists. This vital textbook is organized around static and dynamic models, covering both macro and microeconomic topics, exploring the numerical techniques required to solve those models. A key aim of the book is to enable students to develop the ability to modify the models themselves so that, using the MATLAB/Octave codes provided on the book and on the website, students can demonstrate a complete understanding of computational methods. This textbook is innovative, easy to read and highly focused, providing students of economics with the skills needed to understand the essentials of using numerical methods to solve economic problems. It also provides more technical readers with an easy way to cope with economics through modelling and simulation. Later in the book, more elaborate economic models and advanced numerical methods are introduced which will prove valuable to those in more advanced study. This book is ideal for all students of economics, mathematics, computer science and engineering taking classes on Computational or Numerical Economics.




Foundations of Mathematical and Computational Economics


Book Description

This is a book on the basics of mathematics and computation and their uses in economics for modern day students and practitioners. The reader is introduced to the basics of numerical analysis as well as the use of computer programs such as Matlab and Excel in carrying out involved computations. Sections are devoted to the use of Maple in mathematical analysis. Examples drawn from recent contributions to economic theory and econometrics as well as a variety of end of chapter exercises help to illustrate and apply the presented concepts.




Handbook of Computational Econometrics


Book Description

Handbook of Computational Econometrics examines the state of the art of computational econometrics and provides exemplary studies dealing with computational issues arising from a wide spectrum of econometric fields including such topics as bootstrapping, the evaluation of econometric software, and algorithms for control, optimization, and estimation. Each topic is fully introduced before proceeding to a more in-depth examination of the relevant methodologies and valuable illustrations. This book: Provides self-contained treatments of issues in computational econometrics with illustrations and invaluable bibliographies. Brings together contributions from leading researchers. Develops the techniques needed to carry out computational econometrics. Features network studies, non-parametric estimation, optimization techniques, Bayesian estimation and inference, testing methods, time-series analysis, linear and nonlinear methods, VAR analysis, bootstrapping developments, signal extraction, software history and evaluation. This book will appeal to econometricians, financial statisticians, econometric researchers and students of econometrics at both graduate and advanced undergraduate levels.




Economic Dynamics, second edition


Book Description

The second edition of a rigorous and example-driven introduction to topics in economic dynamics that emphasizes techniques for modeling dynamic systems. This text provides an introduction to the modern theory of economic dynamics, with emphasis on mathematical and computational techniques for modeling dynamic systems. Written to be both rigorous and engaging, the book shows how sound understanding of the underlying theory leads to effective algorithms for solving real-world problems. The material makes extensive use of programming examples to illustrate ideas, bringing to life the abstract concepts in the text. Key topics include algorithms and scientific computing, simulation, Markov models, and dynamic programming. Part I introduces fundamentals and part II covers more advanced material. This second edition has been thoroughly updated, drawing on recent research in the field. New for the second edition: “Programming-language agnostic” presentation using pseudocode. New chapter 1 covering conceptual issues concerning Markov chains such as ergodicity and stability. New focus in chapter 2 on algorithms and techniques for program design and high-performance computing. New focus on household problems rather than optimal growth in material on dynamic programming. Solutions to many exercises, code, and other resources available on a supplementary website.




Introduction to Computational Economics Using Fortran


Book Description

This exercise and solutions manual accompanies the main edition of Introduction to Computational Economics Using Fortran. It enables students of all levels to practice the skills and knowledge needed to conduct economic research using Fortran. Introduction to Computational Economics Using Fortran is the essential guide to conducting economic research on a computer. Aimed at students of all levels of education as well as advanced economic researchers, it facilitates the first steps into writing programming language. This exercise and solutions manual is accompanied by a program database that readers are able to download.




Computational Economics


Book Description

The ability to conceptualize an economic problem verbally, to formulate it as a mathematical model, and then represent the mathematics in software so that the model can be solved on a computer is a crucial skill for economists. Computational Economics contains well-known models--and some brand-new ones--designed to help students move from verbal to mathematical to computational representations in economic modeling. The authors' focus, however, is not just on solving the models, but also on developing the ability to modify them to reflect one's interest and point of view. The result is a book that enables students to be creative in developing models that are relevant to the economic problems of their times. Unlike other computational economics textbooks, this book is organized around economic topics, among them macroeconomics, microeconomics, and finance. The authors employ various software systems--including MATLAB, Mathematica, GAMS, the nonlinear programming solver in Excel, and the database systems in Access--to enable students to use the most advantageous system. The book progresses from relatively simple models to more complex ones, and includes appendices on the ins and outs of running each program. The book is intended for use by advanced undergraduates and professional economists and even, as a first exposure to computational economics, by graduate students. Organized by economic topics Progresses from simple to more complex models Includes instructions on numerous software systems Encourages customization and creativity




Handbook of Computational Economics


Book Description

The explosive growth in computational power over the past several decades offers new tools and opportunities for economists. This handbook volume surveys recent research on Agent-based Computational Economics (ACE), the computational study of economic processes modeled as dynamic systems of interacting agents. Empirical referents for "agents" in ACE models can range from individuals or social groups with learning capabilities to physical world features with no cognitive function. Topics covered include: learning; empirical validation; network economics; social dynamics; financial markets; innovation and technological change; organizations; market design; automated markets and trading agents; political economy; social-ecological systems; computational laboratory development; and general methodological issues.*Every volume contains contributions from leading researchers*Each Handbook presents an accurate, self-contained survey of a particular topic *The series provides comprehensive and accessible surveys




Computational Economics and Econometrics


Book Description

The field of Computational Economics is a fast growing area. Due to the limitations in analytical modeling, more and more researchers apply numerical methods as a means of problem solving. In tum these quantitative results can be used to make qualitative statements. This volume of the Advanced Series in Theoretical and Applied and Econometrics comprises a selected number of papers in the field of computational economics presented at the Annual Meeting of the Society Economic Dynamics and Control held in Minneapolis, June 1990. The volume covers ten papers dealing with computational issues in Econo metrics, Economics and Optimization. The first five papers in these proceedings are dedicated to numerical issues in econometric estimation. The following three papers are concerned with computational issues in model solving and optimization. The last two papers highlight some numerical techniques for solving micro models. We are sure that Computational Economics will become an important new trend in Economics in the coming decade. Hopefully this volume can be one of the first contributions highlighting this new trend. The Editors H.M. Amman et a1. (eds), Computational Economics and Econometrics, vii. © 1992 Kluwer Academic Publishers. PART ONE ECONOMETRICS LIKELIHOOD EVALUATION FOR DYNAMIC LATENT VARIABLES 1 MODELS DAVID F. HENDRY Nuffield College, Oxford, U.K. and JEAN-FRANc;mS RICHARD ISDS, Pittsburgh University, Pittsburgh, PA, U.S.A.




Data Science for Financial Econometrics


Book Description

This book offers an overview of state-of-the-art econometric techniques, with a special emphasis on financial econometrics. There is a major need for such techniques, since the traditional way of designing mathematical models – based on researchers’ insights – can no longer keep pace with the ever-increasing data flow. To catch up, many application areas have begun relying on data science, i.e., on techniques for extracting models from data, such as data mining, machine learning, and innovative statistics. In terms of capitalizing on data science, many application areas are way ahead of economics. To close this gap, the book provides examples of how data science techniques can be used in economics. Corresponding techniques range from almost traditional statistics to promising novel ideas such as quantum econometrics. Given its scope, the book will appeal to students and researchers interested in state-of-the-art developments, and to practitioners interested in using data science techniques.




Econometric Methods with Applications in Business and Economics


Book Description

Nowadays applied work in business and economics requires a solid understanding of econometric methods to support decision-making. Combining a solid exposition of econometric methods with an application-oriented approach, this rigorous textbook provides students with a working understanding and hands-on experience of current econometrics. Taking a 'learning by doing' approach, it covers basic econometric methods (statistics, simple and multiple regression, nonlinear regression, maximum likelihood, and generalized method of moments), and addresses the creative process of model building with due attention to diagnostic testing and model improvement. Its last part is devoted to two major application areas: the econometrics of choice data (logit and probit, multinomial and ordered choice, truncated and censored data, and duration data) and the econometrics of time series data (univariate time series, trends, volatility, vector autoregressions, and a brief discussion of SUR models, panel data, and simultaneous equations). · Real-world text examples and practical exercise questions stimulate active learning and show how econometrics can solve practical questions in modern business and economic management. · Focuses on the core of econometrics, regression, and covers two major advanced topics, choice data with applications in marketing and micro-economics, and time series data with applications in finance and macro-economics. · Learning-support features include concise, manageable sections of text, frequent cross-references to related and background material, summaries, computational schemes, keyword lists, suggested further reading, exercise sets, and online data sets and solutions. · Derivations and theory exercises are clearly marked for students in advanced courses. This textbook is perfect for advanced undergraduate students, new graduate students, and applied researchers in econometrics, business, and economics, and for researchers in other fields that draw on modern applied econometrics.