Computational Science — ICCS 2004


Book Description

The International Conference on Computational Science (ICCS 2004) held in Krak ́ ow, Poland, June 6–9, 2004, was a follow-up to the highly successful ICCS 2003 held at two locations, in Melbourne, Australia and St. Petersburg, Russia; ICCS 2002 in Amsterdam, The Netherlands; and ICCS 2001 in San Francisco, USA. As computational science is still evolving in its quest for subjects of inves- gation and e?cient methods, ICCS 2004 was devised as a forum for scientists from mathematics and computer science, as the basic computing disciplines and application areas, interested in advanced computational methods for physics, chemistry, life sciences, engineering, arts and humanities, as well as computer system vendors and software developers. The main objective of this conference was to discuss problems and solutions in all areas, to identify new issues, to shape future directions of research, and to help users apply various advanced computational techniques. The event harvested recent developments in com- tationalgridsandnextgenerationcomputingsystems,tools,advancednumerical methods, data-driven systems, and novel application ?elds, such as complex - stems, ?nance, econo-physics and population evolution.




Metaheuristics for Combinatorial Optimization


Book Description

This book presents novel and original metaheuristics developed to solve the cost-balanced traveling salesman problem. This problem was taken into account for the Metaheuristics Competition proposed in MESS 2018, Metaheuristics Summer School, and the top 4 methodologies ranked are included in the book, together with a brief introduction to the traveling salesman problem and all its variants. The book is aimed particularly at all researchers in metaheuristics and combinatorial optimization areas. Key uses are metaheuristics; complex problem solving; combinatorial optimization; traveling salesman problem.




Mixed Integer Nonlinear Programming


Book Description

Many engineering, operations, and scientific applications include a mixture of discrete and continuous decision variables and nonlinear relationships involving the decision variables that have a pronounced effect on the set of feasible and optimal solutions. Mixed-integer nonlinear programming (MINLP) problems combine the numerical difficulties of handling nonlinear functions with the challenge of optimizing in the context of nonconvex functions and discrete variables. MINLP is one of the most flexible modeling paradigms available for optimization; but because its scope is so broad, in the most general cases it is hopelessly intractable. Nonetheless, an expanding body of researchers and practitioners — including chemical engineers, operations researchers, industrial engineers, mechanical engineers, economists, statisticians, computer scientists, operations managers, and mathematical programmers — are interested in solving large-scale MINLP instances.




Modeling, Computation and Optimization


Book Description

This volume provides recent developments and a state-of-the-art review in various areas of mathematical modeling, computation and optimization. It contains theory, computation as well as the applications of several mathematical models to problems in statistics, games, optimization and economics for decision making. It focuses on exciting areas like models for wireless networks, models of Nash networks, dynamic models of advertising, application of reliability models in economics, support vector machines, optimization, complementarity modeling and games.




Derivative-Free and Blackbox Optimization


Book Description

This book is designed as a textbook, suitable for self-learning or for teaching an upper-year university course on derivative-free and blackbox optimization. The book is split into 5 parts and is designed to be modular; any individual part depends only on the material in Part I. Part I of the book discusses what is meant by Derivative-Free and Blackbox Optimization, provides background material, and early basics while Part II focuses on heuristic methods (Genetic Algorithms and Nelder-Mead). Part III presents direct search methods (Generalized Pattern Search and Mesh Adaptive Direct Search) and Part IV focuses on model-based methods (Simplex Gradient and Trust Region). Part V discusses dealing with constraints, using surrogates, and bi-objective optimization. End of chapter exercises are included throughout as well as 15 end of chapter projects and over 40 figures. Benchmarking techniques are also presented in the appendix.







Hybrid Metaheuristics


Book Description

This book constitutes the refereed proceedings of the 9th International Workshop on Hybrid Metaheuristics, HM 2014, held in Hamburg, Germany, in June 2014. The 14 revised full papers presented were carefully reviewed and selected from 22 submissions. The selected papers cover both theoretical and experimental results, including new paradigmatic hybrid solvers and automatic design approaches as well as applications to logistics and public transport.




Hybrid Metaheuristics


Book Description

Optimization problems are of great importance across a broad range of fields. They can be tackled, for example, by approximate algorithms such as metaheuristics. This book is intended both to provide an overview of hybrid metaheuristics to novices of the field, and to provide researchers from the field with a collection of some of the most interesting recent developments. The authors involved in this book are among the top researchers in their domain.




Proceedings of the Fourteenth International Conference on Management Science and Engineering Management


Book Description

This book gathers the proceedings of the 14th International Conference on Management Science and Engineering Management (ICMSEM 2020). Held at the Academy of Studies of Moldova from July 30 to August 2, 2020, the conference provided a platform for researchers and practitioners in the field to share their ideas and experiences. Covering a wide range of topics, including hot management issues in engineering science, the book presents novel ideas and the latest research advances in the area of management science and engineering management. It includes both theoretical and practical studies of management science applied in computing methodology, highlighting advanced management concepts, and computing technologies for decision-making problems involving large, uncertain and unstructured data. The book also describes the changes and challenges relating to decision-making procedures at the dawn of the big data era, and discusses new technologies for analysis, capture, search, sharing, storage, transfer and visualization, and in the context of privacy violations, as well as advances in the integration of optimization, statistics and data mining. Given its scope, it will appeal to a wide readership, particularly those looking for new ideas and research directions.




Introduction to Derivative-Free Optimization


Book Description

The first contemporary comprehensive treatment of optimization without derivatives. This text explains how sampling and model techniques are used in derivative-free methods and how they are designed to solve optimization problems. It is designed to be readily accessible to both researchers and those with a modest background in computational mathematics.