Computational Frameworks for the Fast Fourier Transform


Book Description

The author captures the interplay between mathematics and the design of effective numerical algorithms.




Fast Fourier Transforms


Book Description

This book uses an index map, a polynomial decomposition, an operator factorization, and a conversion to a filter to develop a very general and efficient description of fast algorithms to calculate the discrete Fourier transform (DFT). The work of Winograd is outlined, chapters by Selesnick, Pueschel, and Johnson are included, and computer programs are provided.




Fast Fourier Transform - Algorithms and Applications


Book Description

This book presents an introduction to the principles of the fast Fourier transform. This book covers FFTs, frequency domain filtering, and applications to video and audio signal processing. As fields like communications, speech and image processing, and related areas are rapidly developing, the FFT as one of essential parts in digital signal processing has been widely used. Thus there is a pressing need from instructors and students for a book dealing with the latest FFT topics. This book provides thorough and detailed explanation of important or up-to-date FFTs. It also has adopted modern approaches like MATLAB examples and projects for better understanding of diverse FFTs.




Fast Fourier Transform Algorithms for Parallel Computers


Book Description

Following an introduction to the basis of the fast Fourier transform (FFT), this book focuses on the implementation details on FFT for parallel computers. FFT is an efficient implementation of the discrete Fourier transform (DFT), and is widely used for many applications in engineering, science, and mathematics. Presenting many algorithms in pseudo-code and a complexity analysis, this book offers a valuable reference guide for graduate students, engineers, and scientists in the field who wish to apply FFT to large-scale problems. Parallel computation is becoming indispensable in solving the large-scale problems increasingly arising in a wide range of applications. The performance of parallel supercomputers is steadily improving, and it is expected that a massively parallel system with hundreds of thousands of compute nodes equipped with multi-core processors and accelerators will be available in the near future. Accordingly, the book also provides up-to-date computational techniques relevant to the FFT in state-of-the-art parallel computers. Following the introductory chapter, Chapter 2 introduces readers to the DFT and the basic idea of the FFT. Chapter 3 explains mixed-radix FFT algorithms, while Chapter 4 describes split-radix FFT algorithms. Chapter 5 explains multi-dimensional FFT algorithms, Chapter 6 presents high-performance FFT algorithms, and Chapter 7 addresses parallel FFT algorithms for shared-memory parallel computers. In closing, Chapter 8 describes parallel FFT algorithms for distributed-memory parallel computers.




Parallel Scientific Computation


Book Description

Building upon the wide-ranging success of the first edition, Parallel Scientific Computation presents a single unified approach to using a range of parallel computers, from a small desktop computer to a massively parallel computer. The author explains how to use the bulk synchronous parallel (BSP) model to design and implement parallel algorithms in the areas of scientific computing and big data, and provides a full treatment of core problems in these areas, starting from a high-level problem description, via a sequential solution algorithm to a parallel solution algorithm and an actual parallel program written in BSPlib. Every chapter of the book contains a theoretical section and a practical section presenting a parallel program and numerical experiments on a modern parallel computer to put the theoretical predictions and cost analysis to the test. Every chapter also presents extensive bibliographical notes with additional discussions and pointers to relevant literature, and numerous exercises which are suitable as graduate student projects. The second edition provides new material relevant for big-data science such as sorting and graph algorithms, and it provides a BSP approach towards new hardware developments such as hierarchical architectures with both shared and distributed memory. A single, simple hybrid BSP system suffices to handle both types of parallelism efficiently, and there is no need to master two systems, as often happens in alternative approaches. Furthermore, the second edition brings all algorithms used up to date, and it includes new material on high-performance linear system solving by LU decomposition, and improved data partitioning for sparse matrix computations. The book is accompanied by a software package BSPedupack, freely available online from the author's homepage, which contains all programs of the book and a set of test driver programs. This package written in C can be run using modern BSPlib implementations such as MulticoreBSP for C or BSPonMPI.




The DFT


Book Description

This book explores both the practical and theoretical aspects of the Discrete Fourier Transform, one of the most widely used tools in science, engineering, and computational mathematics. Designed to be accessible to an audience with diverse interests and mathematical backgrounds, the book is written in an informal style and is supported by many examples, figures, and problems. Conceived as an "owner's" manual, this comprehensive book covers such topics as the history of the DFT, derivations and properties of the DFT, comprehensive error analysis, issues concerning the implementation of the DFT in one and several dimensions, symmetric DFTs, a sample of DFT applications, and an overview of the FFT.




Mathematics of Multidimensional Fourier Transform Algorithms


Book Description

Developing algorithms for multi-dimensional Fourier transforms, this book presents results that yield highly efficient code on a variety of vector and parallel computers. By emphasising the unified basis for the many approaches to both one-dimensional and multidimensional Fourier transforms, this book not only clarifies the fundamental similarities, but also shows how to exploit the differences in optimising implementations. It will thus be of great interest not only to applied mathematicians and computer scientists, but also to seismologists, high-energy physicists, crystallographers, and electrical engineers working on signal and image processing.




High Performance Computing and Communications


Book Description

This book constitutes the refereed proceedings of the Third International Conference on High Performance Computing and Communications, HPCC 2007. The 75 revised full papers address all current issues of parallel and distributed systems and high performance computing and communication, including networking protocols, embedded systems, wireless, mobile and pervasive computing, Web services and internet computing, and programming interfaces for parallel systems.




Computational Science - ICCS 2003. Part 4.


Book Description

The four-volume set LNCS 2657, LNCS 2658, LNCS 2659, and LNCS 2660 constitutes the refereed proceedings of the Third International Conference on Computational Science, ICCS 2003, held concurrently in Melbourne, Australia and in St. Petersburg, Russia in June 2003. The four volumes present more than 460 reviewed contributed and invited papers and span the whole range of computational science, from foundational issues in computer science and algorithmic mathematics to advanced applications in virtually all application fields making use of computational techniques. These proceedings give a unique account of recent results in the field.




Discrete and Continuous Fourier Transforms


Book Description

Long employed in electrical engineering, the discrete Fourier transform (DFT) is now applied in a range of fields through the use of digital computers and fast Fourier transform (FFT) algorithms. But to correctly interpret DFT results, it is essential to understand the core and tools of Fourier analysis. Discrete and Continuous Fourier Transform