Computational Geometry on Surfaces


Book Description

In the last thirty years Computational Geometry has emerged as a new discipline from the field of design and analysis of algorithms. That dis cipline studies geometric problems from a computational point of view, and it has attracted enormous research interest. But that interest is mostly concerned with Euclidean Geometry (mainly the plane or Eu clidean 3-dimensional space). Of course, there are some important rea sons for this occurrence since the first applieations and the bases of all developments are in the plane or in 3-dimensional space. But, we can find also some exceptions, and so Voronoi diagrams on the sphere, cylin der, the cone, and the torus have been considered previously, and there are manY works on triangulations on the sphere and other surfaces. The exceptions mentioned in the last paragraph have appeared to try to answer some quest ions which arise in the growing list of areas in which the results of Computational Geometry are applicable, since, in practiee, many situations in those areas lead to problems of Com putational Geometry on surfaces (probably the sphere and the cylinder are the most common examples). We can mention here some specific areas in which these situations happen as engineering, computer aided design, manufacturing, geographie information systems, operations re search, roboties, computer graphics, solid modeling, etc.




Computational Geometry on Surfaces


Book Description

In the last thirty years Computational Geometry has emerged as a new discipline from the field of design and analysis of algorithms. That dis cipline studies geometric problems from a computational point of view, and it has attracted enormous research interest. But that interest is mostly concerned with Euclidean Geometry (mainly the plane or Eu clidean 3-dimensional space). Of course, there are some important rea sons for this occurrence since the first applieations and the bases of all developments are in the plane or in 3-dimensional space. But, we can find also some exceptions, and so Voronoi diagrams on the sphere, cylin der, the cone, and the torus have been considered previously, and there are manY works on triangulations on the sphere and other surfaces. The exceptions mentioned in the last paragraph have appeared to try to answer some quest ions which arise in the growing list of areas in which the results of Computational Geometry are applicable, since, in practiee, many situations in those areas lead to problems of Com putational Geometry on surfaces (probably the sphere and the cylinder are the most common examples). We can mention here some specific areas in which these situations happen as engineering, computer aided design, manufacturing, geographie information systems, operations re search, roboties, computer graphics, solid modeling, etc.




Computational Geometry and Computer Graphics in C++


Book Description

This book provides an accessible introduction to methods in computational geometry and computer graphics. It emphasizes the efficient object-oriented implemenation of geometric methods with useable C++ code for all methods discussed.




Computational Geometry


Book Description

From the reviews: "This book offers a coherent treatment, at the graduate textbook level, of the field that has come to be known in the last decade or so as computational geometry. ... ... The book is well organized and lucidly written; a timely contribution by two founders of the field. It clearly demonstrates that computational geometry in the plane is now a fairly well-understood branch of computer science and mathematics. It also points the way to the solution of the more challenging problems in dimensions higher than two." #Mathematical Reviews#1 "... This remarkable book is a comprehensive and systematic study on research results obtained especially in the last ten years. The very clear presentation concentrates on basic ideas, fundamental combinatorial structures, and crucial algorithmic techniques. The plenty of results is clever organized following these guidelines and within the framework of some detailed case studies. A large number of figures and examples also aid the understanding of the material. Therefore, it can be highly recommended as an early graduate text but it should prove also to be essential to researchers and professionals in applied fields of computer-aided design, computer graphics, and robotics." #Biometrical Journal#2




Computational Line Geometry


Book Description

From the reviews: " A unique and fascinating blend, which is shown to be useful for a variety of applications, including robotics, geometrical optics, computer animation, and geometric design. The contents of the book are visualized by a wealth of carefully chosen illustrations, making the book a shear pleasure to read, or even to just browse in." Mathematical Reviews




Curves and Surfaces in Geometric Modeling


Book Description

"Curves and Surfaces in Geometric Modeling: Theory and Algorithms offers a theoretically unifying understanding of polynomial curves and surfaces as well as an effective approach to implementation that you can apply to your own work as a graduate student, scientist, or practitioner." "The focus here is on blossoming - the process of converting a polynomial to its polar form - as a natural, purely geometric explanation of the behavior of curves and surfaces. This insight is important for more than just its theoretical elegance - the author demonstrates the value of blossoming as a practical algorithmic tool for generating and manipulating curves and surfaces that meet many different criteria. You'll learn to use this and other related techniques drawn from affine geometry for computing and adjusting control points, deriving the continuity conditions for splines, creating subdivision surfaces, and more." "It will be an essential acquisition for readers in many different areas, including computer graphics and animation, robotics, virtual reality, geometric modeling and design, medical imaging, computer vision, and motion planning."--BOOK JACKET.Title Summary field provided by Blackwell North America, Inc. All Rights Reserved




Computational Geometry for Ships


Book Description

This book offers an advanced course on ?Computational Geometry for Ships?. It takes into account the recent rapid progress in this field by adapting modern computational methodology to ship geometric applications. Preliminary curve and surface techniques are included to educate engineers in the use of mathematical methods to assist in CAD and other design areas. In addition, there is a comprehensive study of interpolation and approximation techniques, which is reinforced by direct application to ship curve design, ship curve fairing techniques and other related disciplines. The design, evaluation and production of ship surface geometries are further demonstrated by including current and evolving CAD modelling systems.




Guide to Computational Geometry Processing


Book Description

This book reviews the algorithms for processing geometric data, with a practical focus on important techniques not covered by traditional courses on computer vision and computer graphics. Features: presents an overview of the underlying mathematical theory, covering vector spaces, metric space, affine spaces, differential geometry, and finite difference methods for derivatives and differential equations; reviews geometry representations, including polygonal meshes, splines, and subdivision surfaces; examines techniques for computing curvature from polygonal meshes; describes algorithms for mesh smoothing, mesh parametrization, and mesh optimization and simplification; discusses point location databases and convex hulls of point sets; investigates the reconstruction of triangle meshes from point clouds, including methods for registration of point clouds and surface reconstruction; provides additional material at a supplementary website; includes self-study exercises throughout the text.




Discrete and Computational Geometry


Book Description

An essential introduction to discrete and computational geometry Discrete geometry is a relatively new development in pure mathematics, while computational geometry is an emerging area in applications-driven computer science. Their intermingling has yielded exciting advances in recent years, yet what has been lacking until now is an undergraduate textbook that bridges the gap between the two. Discrete and Computational Geometry offers a comprehensive yet accessible introduction to this cutting-edge frontier of mathematics and computer science. This book covers traditional topics such as convex hulls, triangulations, and Voronoi diagrams, as well as more recent subjects like pseudotriangulations, curve reconstruction, and locked chains. It also touches on more advanced material, including Dehn invariants, associahedra, quasigeodesics, Morse theory, and the recent resolution of the Poincaré conjecture. Connections to real-world applications are made throughout, and algorithms are presented independently of any programming language. This richly illustrated textbook also features numerous exercises and unsolved problems. The essential introduction to discrete and computational geometry Covers traditional topics as well as new and advanced material Features numerous full-color illustrations, exercises, and unsolved problems Suitable for sophomores in mathematics, computer science, engineering, or physics Rigorous but accessible An online solutions manual is available (for teachers only)




Computational Geometry


Book Description

Computational Geometry: Curve and Surface Modeling provides information pertinent to the fundamental aspects of computational geometry. This book discusses the geometric properties of parametric polynomial curves by using the theory of affine invariants for algebraic curves. Organized into eight chapters, this book begins with an overview of the objects studies in computational geometry, namely surfaces and curves. This text then explores the developments in the theory and application of spline functions, which began with cubic spline functions. Other chapters consider the mechanical background of the cubic spline functions, which is the wooden spline with small deflection. This book discusses as well that in mathematical lofting the information of a geometric shape is given by a set of data points, while in geometric design other ways of representations are available. The final chapter deals with the concepts in the theory of algebraic curves. This book is a valuable resource for mathematicians.