Handbook of Computational Group Theory


Book Description

The origins of computation group theory (CGT) date back to the late 19th and early 20th centuries. Since then, the field has flourished, particularly during the past 30 to 40 years, and today it remains a lively and active branch of mathematics. The Handbook of Computational Group Theory offers the first complete treatment of all the fundame




Representations of Groups


Book Description

The representation theory of finite groups has seen rapid growth in recent years with the development of efficient algorithms and computer algebra systems. This is the first book to provide an introduction to the ordinary and modular representation theory of finite groups with special emphasis on the computational aspects of the subject. Evolving from courses taught at Aachen University, this well-paced text is ideal for graduate-level study. The authors provide over 200 exercises, both theoretical and computational, and include worked examples using the computer algebra system GAP. These make the abstract theory tangible and engage students in real hands-on work. GAP is freely available from www.gap-system.org and readers can download source code and solutions to selected exercises from the book's web page.




Computational Group Theory and the Theory of Groups


Book Description

"The power of general purpose computational algebra systems running on personal computers has increased rapidly in recent years. For mathematicians doing research in group theory, this means a growing set of sophisticated computational tools are now available for their use in developing new theoretical results." "This volume consists of contributions by researchers invited to the AMS Special Session on Computational Group Theory held in March 2007. The main focus of the session was on the application of Computational Group Theory (CGT) to a wide range of theoretical aspects of group theory. The articles in this volume provide a variety of examples of how these computer systems helped to solve interesting theoretical problems within the discipline, such as constructions of finite simple groups, classification of $p$-groups via coclass, representation theory and constructions involving free nilpotent groups. The volume also includes an article by R. F. Morse highlighting applications of CGT in group theory and two survey articles." "Graduate students and researchers interested in various aspects of group theory will find many examples of Computational Group Theory helping research and will recognize it as yet another tool at their disposal."--BOOK JACKET.




Groups, Combinatorics and Geometry


Book Description

This volume contains a collection of papers on the subject of the classification of finite simple groups.




Applications of the Theory of Groups in Mechanics and Physics


Book Description

The notion of group is fundamental in our days, not only in mathematics, but also in classical mechanics, electromagnetism, theory of relativity, quantum mechanics, theory of elementary particles, etc. This notion has developed during a century and this development is connected with the names of great mathematicians as E. Galois, A. L. Cauchy, C. F. Gauss, W. R. Hamilton, C. Jordan, S. Lie, E. Cartan, H. Weyl, E. Wigner, and of many others. In mathematics, as in other sciences, the simple and fertile ideas make their way with difficulty and slowly; however, this long history would have been of a minor interest, had the notion of group remained connected only with rather restricted domains of mathematics, those in which it occurred at the beginning. But at present, groups have invaded almost all mathematical disciplines, mechanics, the largest part of physics, of chemistry, etc. We may say, without exaggeration, that this is the most important idea that occurred in mathematics since the invention of infinitesimal calculus; indeed, the notion of group expresses, in a precise and operational form, the vague and universal ideas of regularity and symmetry. The notion of group led to a profound understanding of the character of the laws which govern natural phenomena, permitting to formulate new laws, correcting certain inadequate formulations and providing unitary and non contradictory formulations for the investigated phenomena.




Computational Invariant Theory


Book Description

This book, the first volume of a subseries on "Invariant Theory and Algebraic Transformation Groups", provides a comprehensive and up-to-date overview of the algorithmic aspects of invariant theory. Numerous illustrative examples and a careful selection of proofs make the book accessible to non-specialists.




Office Hours with a Geometric Group Theorist


Book Description

Geometric group theory is the study of the interplay between groups and the spaces they act on, and has its roots in the works of Henri Poincaré, Felix Klein, J.H.C. Whitehead, and Max Dehn. Office Hours with a Geometric Group Theorist brings together leading experts who provide one-on-one instruction on key topics in this exciting and relatively new field of mathematics. It's like having office hours with your most trusted math professors. An essential primer for undergraduates making the leap to graduate work, the book begins with free groups—actions of free groups on trees, algorithmic questions about free groups, the ping-pong lemma, and automorphisms of free groups. It goes on to cover several large-scale geometric invariants of groups, including quasi-isometry groups, Dehn functions, Gromov hyperbolicity, and asymptotic dimension. It also delves into important examples of groups, such as Coxeter groups, Thompson's groups, right-angled Artin groups, lamplighter groups, mapping class groups, and braid groups. The tone is conversational throughout, and the instruction is driven by examples. Accessible to students who have taken a first course in abstract algebra, Office Hours with a Geometric Group Theorist also features numerous exercises and in-depth projects designed to engage readers and provide jumping-off points for research projects.




Group Theory


Book Description

If classical Lie groups preserve bilinear vector norms, what Lie groups preserve trilinear, quadrilinear, and higher order invariants? Answering this question from a fresh and original perspective, Predrag Cvitanovic takes the reader on the amazing, four-thousand-diagram journey through the theory of Lie groups. This book is the first to systematically develop, explain, and apply diagrammatic projection operators to construct all semi-simple Lie algebras, both classical and exceptional. The invariant tensors are presented in a somewhat unconventional, but in recent years widely used, "birdtracks" notation inspired by the Feynman diagrams of quantum field theory. Notably, invariant tensor diagrams replace algebraic reasoning in carrying out all group-theoretic computations. The diagrammatic approach is particularly effective in evaluating complicated coefficients and group weights, and revealing symmetries hidden by conventional algebraic or index notations. The book covers most topics needed in applications from this new perspective: permutations, Young projection operators, spinorial representations, Casimir operators, and Dynkin indices. Beyond this well-traveled territory, more exotic vistas open up, such as "negative dimensional" relations between various groups and their representations. The most intriguing result of classifying primitive invariants is the emergence of all exceptional Lie groups in a single family, and the attendant pattern of exceptional and classical Lie groups, the so-called Magic Triangle. Written in a lively and personable style, the book is aimed at researchers and graduate students in theoretical physics and mathematics.







Group Theory


Book Description

This concise, class-tested book was refined over the authors’ 30 years as instructors at MIT and the University Federal of Minas Gerais (UFMG) in Brazil. The approach centers on the conviction that teaching group theory along with applications helps students to learn, understand and use it for their own needs. Thus, the theoretical background is confined to introductory chapters. Subsequent chapters develop new theory alongside applications so that students can retain new concepts, build on concepts already learned, and see interrelations between topics. Essential problem sets between chapters aid retention of new material and consolidate material learned in previous chapters.