Computational Human-Robot Interaction


Book Description

Computational Human-Robot Interaction provides the reader with a systematic overview of the field of Human-Robot Interaction over the past decade, with a focus on the computational frameworks, algorithms, techniques, and models currently used to enable robots to interact with humans.




Cognitive Computing for Human-Robot Interaction


Book Description

Cognitive Computing for Human-Robot Interaction: Principles and Practices explores the efforts that should ultimately enable society to take advantage of the often-heralded potential of robots to provide economical and sustainable computing applications. This book discusses each of these applications, presents working implementations, and combines coherent and original deliberative architecture for human–robot interactions (HRI). Supported by experimental results, it shows how explicit knowledge management promises to be instrumental in building richer and more natural HRI, by pushing for pervasive, human-level semantics within the robot's deliberative system for sustainable computing applications. This book will be of special interest to academics, postgraduate students, and researchers working in the area of artificial intelligence and machine learning. Key features: - Introduces several new contributions to the representation and management of humans in autonomous robotic systems; - Explores the potential of cognitive computing, robots, and HRI to generate a deeper understanding and to provide a better contribution from robots to society; - Engages with the potential repercussions of cognitive computing and HRI in the real world. - Introduces several new contributions to the representation and management of humans in an autonomous robotic system - Explores cognitive computing, robots and HRI, presenting a more in-depth understanding to make robots better for society - Gives a challenging approach to those several repercussions of cognitive computing and HRI in the actual global scenario




New Frontiers in Human-robot Interaction


Book Description

Human–Robot Interaction (HRI) considers how people can interact with robots in order to enable robots to best interact with people. HRI presents many challenges with solutions requiring a unique combination of skills from many fields, including computer science, artificial intelligence, social sciences, ethology and engineering. We have specifically aimed this work to appeal to such a multi-disciplinary audience. This volume presents new and exciting material from HRI researchers who discuss research at the frontiers of HRI. The chapters address the human aspects of interaction, such as how a robot may understand, provide feedback and act as a social being in interaction with a human, to experimental studies and field implementations of human–robot collaboration ranging from joint action, robots practically and safely helping people in real world situations, robots helping people via rehabilitation and robots acquiring concepts from communication. This volume reflects current trends in this exciting research field.




Trust in Human-Robot Interaction


Book Description

Trust in Human-Robot Interaction addresses the gamut of factors that influence trust of robotic systems. The book presents the theory, fundamentals, techniques and diverse applications of the behavioral, cognitive and neural mechanisms of trust in human-robot interaction, covering topics like individual differences, transparency, communication, physical design, privacy and ethics. - Presents a repository of the open questions and challenges in trust in HRI - Includes contributions from many disciplines participating in HRI research, including psychology, neuroscience, sociology, engineering and computer science - Examines human information processing as a foundation for understanding HRI - Details the methods and techniques used to test and quantify trust in HRI




Human-robot Interaction


Book Description

Presents a unified treatment of HRI-related issues, identifies key themes, and discusses challenge problems that are likely to shape the field in the near future. The survey includes research results from a cross section of the universities, government efforts, industry labs, and countries that contribute to HRI.




Human-Robot Interaction


Book Description

This book offers the first comprehensive yet critical overview of methods used to evaluate interaction between humans and social robots. It reviews commonly used evaluation methods, and shows that they are not always suitable for this purpose. Using representative case studies, the book identifies good and bad practices for evaluating human-robot interactions and proposes new standardized processes as well as recommendations, carefully developed on the basis of intensive discussions between specialists in various HRI-related disciplines, e.g. psychology, ethology, ergonomics, sociology, ethnography, robotics, and computer science. The book is the result of a close, long-standing collaboration between the editors and the invited contributors, including, but not limited to, their inspiring discussions at the workshop on Evaluation Methods Standardization for Human-Robot Interaction (EMSHRI), which have been organized yearly since 2015. By highlighting and weighing good and bad practices in evaluation design for HRI, the book will stimulate the scientific community to search for better solutions, take advantages of interdisciplinary collaborations, and encourage the development of new standards to accommodate the growing presence of robots in the day-to-day and social lives of human beings.




Emotion Recognition and Understanding for Emotional Human-Robot Interaction Systems


Book Description

This book focuses on the key technologies and scientific problems involved in emotional robot systems, such as multimodal emotion recognition (i.e., facial expression/speech/gesture and their multimodal emotion recognition) and emotion intention understanding, and presents the design and application examples of emotional HRI systems. Aiming at the development needs of emotional robots and emotional human–robot interaction (HRI) systems, this book introduces basic concepts, system architecture, and system functions of affective computing and emotional robot systems. With the professionalism of this book, it serves as a useful reference for engineers in affective computing, and graduate students interested in emotion recognition and intention understanding. This book offers the latest approaches to this active research area. It provides readers with the state-of-the-art methods of multimodal emotion recognition, intention understanding, and application examples of emotional HRI systems.




Computational Approaches for Human-Human and Human-Robot Social Interactions


Book Description

This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.




Human-Robot Interaction


Book Description

The role of robots in society keeps expanding and diversifying, bringing with it a host of issues surrounding the relationship between robots and humans. This introduction to human–robot interaction (HRI) by leading researchers in this developing field is the first to provide a broad overview of the multidisciplinary topics central to modern HRI research. Written for students and researchers from robotics, artificial intelligence, psychology, sociology, and design, it presents the basics of how robots work, how to design them, and how to evaluate their performance. Self-contained chapters discuss a wide range of topics, including speech and language, nonverbal communication, and processing emotions, plus an array of applications and the ethical issues surrounding them. This revised and expanded second edition includes a new chapter on how people perceive robots, coverage of recent developments in robotic hardware, software, and artificial intelligence, and exercises for readers to test their knowledge.




Robot Learning from Human Demonstration


Book Description

Learning from Demonstration (LfD) explores techniques for learning a task policy from examples provided by a human teacher. The field of LfD has grown into an extensive body of literature over the past 30 years, with a wide variety of approaches for encoding human demonstrations and modeling skills and tasks. Additionally, we have recently seen a focus on gathering data from non-expert human teachers (i.e., domain experts but not robotics experts). In this book, we provide an introduction to the field with a focus on the unique technical challenges associated with designing robots that learn from naive human teachers. We begin, in the introduction, with a unification of the various terminology seen in the literature as well as an outline of the design choices one has in designing an LfD system. Chapter 2 gives a brief survey of the psychology literature that provides insights from human social learning that are relevant to designing robotic social learners. Chapter 3 walks through an LfD interaction, surveying the design choices one makes and state of the art approaches in prior work. First, is the choice of input, how the human teacher interacts with the robot to provide demonstrations. Next, is the choice of modeling technique. Currently, there is a dichotomy in the field between approaches that model low-level motor skills and those that model high-level tasks composed of primitive actions. We devote a chapter to each of these. Chapter 7 is devoted to interactive and active learning approaches that allow the robot to refine an existing task model. And finally, Chapter 8 provides best practices for evaluation of LfD systems, with a focus on how to approach experiments with human subjects in this domain.