Computational Intelligence Systems in Industrial Engineering


Book Description

Industrial engineering is a branch of engineering dealing with the optimization of complex processes or systems. It is concerned with the development, improvement, implementation and evaluation of production and service systems. Computational Intelligence Systems find a wide application area in industrial engineering: neural networks in forecasting, fuzzy sets in capital budgeting, ant colony optimization in scheduling, Simulated Annealing in optimization, etc. This book will include most of the application areas of industrial engineering through these computational intelligence systems. In the literature, there is no book including many real and practical applications of Computational Intelligence Systems from the point of view of Industrial Engineering. Every chapter will include explanatory and didactic applications. It is aimed that the book will be a main source for MSc and PhD students.




Computational Intelligence for Engineering and Management Applications


Book Description

This book comprises select proceedings of the 1st International Conference on Computational Intelligence for Engineering and Management Applications (CIEMA - 2022). This book emphasizes applications of computational intelligence including machine intelligence, data analytics, and optimization algorithms for solving fundamental and advanced engineering and management problems. This book serves as a valuable resource for researchers, industry professionals, academicians, and doctoral scholars in engineering, production, thermal, materials, design, computer engineering, natural sciences, and management who work on computational intelligence. The book also serves researchers who are willing to use computational intelligence algorithms in real-time applications.




Applications of Artificial Intelligence in Engineering


Book Description

This book presents best selected papers presented at the First Global Conference on Artificial Intelligence and Applications (GCAIA 2020), organized by the University of Engineering & Management, Jaipur, India, during 8–10 September 2020. The proceeding will be targeting the current research works in the domain of intelligent systems and artificial intelligence.




Computational Management


Book Description

This book offers a timely review of cutting-edge applications of computational intelligence to business management and financial analysis. It covers a wide range of intelligent and optimization techniques, reporting in detail on their application to real-world problems relating to portfolio management and demand forecasting, decision making, knowledge acquisition, and supply chain scheduling and management.




Computational Intelligence Techniques and Their Applications to Software Engineering Problems


Book Description

Computational Intelligence Techniques and Their Applications to Software Engineering Problems focuses on computational intelligence approaches as applicable in varied areas of software engineering such as software requirement prioritization, cost estimation, reliability assessment, defect prediction, maintainability and quality prediction, size estimation, vulnerability prediction, test case selection and prioritization, and much more. The concepts of expert systems, case-based reasoning, fuzzy logic, genetic algorithms, swarm computing, and rough sets are introduced with their applications in software engineering. The field of knowledge discovery is explored using neural networks and data mining techniques by determining the underlying and hidden patterns in software data sets. Aimed at graduate students and researchers in computer science engineering, software engineering, information technology, this book: Covers various aspects of in-depth solutions of software engineering problems using computational intelligence techniques Discusses the latest evolutionary approaches to preliminary theory of different solve optimization problems under software engineering domain Covers heuristic as well as meta-heuristic algorithms designed to provide better and optimized solutions Illustrates applications including software requirement prioritization, software cost estimation, reliability assessment, software defect prediction, and more Highlights swarm intelligence-based optimization solutions for software testing and reliability problems




Intelligent Techniques in Engineering Management


Book Description

This book presents recently developed intelligent techniques with applications and theory in the area of engineering management. The involved applications of intelligent techniques such as neural networks, fuzzy sets, Tabu search, genetic algorithms, etc. will be useful for engineering managers, postgraduate students, researchers, and lecturers. The book has been written considering the contents of a classical engineering management book but intelligent techniques are used for handling the engineering management problem areas. This comprehensive characteristics of the book makes it an excellent reference for the solution of complex problems of engineering management. The authors of the chapters are well-known researchers with their previous works in the area of engineering management.







Applications of Artificial Intelligence in Process Systems Engineering


Book Description

Applications of Artificial Intelligence in Process Systems Engineering offers a broad perspective on the issues related to artificial intelligence technologies and their applications in chemical and process engineering. The book comprehensively introduces the methodology and applications of AI technologies in process systems engineering, making it an indispensable reference for researchers and students. As chemical processes and systems are usually non-linear and complex, thus making it challenging to apply AI methods and technologies, this book is an ideal resource on emerging areas such as cloud computing, big data, the industrial Internet of Things and deep learning. With process systems engineering's potential to become one of the driving forces for the development of AI technologies, this book covers all the right bases. - Explains the concept of machine learning, deep learning and state-of-the-art intelligent algorithms - Discusses AI-based applications in process modeling and simulation, process integration and optimization, process control, and fault detection and diagnosis - Gives direction to future development trends of AI technologies in chemical and process engineering




Artificial Intelligence in Construction Engineering and Management


Book Description

This book highlights the latest technologies and applications of Artificial Intelligence (AI) in the domain of construction engineering and management. The construction industry worldwide has been a late bloomer to adopting digital technology, where construction projects are predominantly managed with a heavy reliance on the knowledge and experience of construction professionals. AI works by combining large amounts of data with fast, iterative processing, and intelligent algorithms (e.g., neural networks, process mining, and deep learning), allowing the computer to learn automatically from patterns or features in the data. It provides a wide range of solutions to address many challenging construction problems, such as knowledge discovery, risk estimates, root cause analysis, damage assessment and prediction, and defect detection. A tremendous transformation has taken place in the past years with the emerging applications of AI. This enables industrial participants to operate projects more efficiently and safely, not only increasing the automation and productivity in construction but also enhancing the competitiveness globally.




Computational Intelligence for Multimedia Big Data on the Cloud with Engineering Applications


Book Description

Computational Intelligence for Multimedia Big Data on the Cloud with Engineering Applications covers timely topics, including the neural network (NN), particle swarm optimization (PSO), evolutionary algorithm (GA), fuzzy sets (FS) and rough sets (RS), etc. Furthermore, the book highlights recent research on representative techniques to elaborate how a data-centric system formed a powerful platform for the processing of cloud hosted multimedia big data and how it could be analyzed, processed and characterized by CI. The book also provides a view on how techniques in CI can offer solutions in modeling, relationship pattern recognition, clustering and other problems in bioengineering. It is written for domain experts and developers who want to understand and explore the application of computational intelligence aspects (opportunities and challenges) for design and development of a data-centric system in the context of multimedia cloud, big data era and its related applications, such as smarter healthcare, homeland security, traffic control trading analysis and telecom, etc. Researchers and PhD students exploring the significance of data centric systems in the next paradigm of computing will find this book extremely useful. - Presents a brief overview of computational intelligence paradigms and its significant role in application domains - Illustrates the state-of-the-art and recent developments in the new theories and applications of CI approaches - Familiarizes the reader with computational intelligence concepts and technologies that are successfully used in the implementation of cloud-centric multimedia services in massive data processing - Provides new advances in the fields of CI for bio-engineering application