Computational Methods in Bifurcation Theory and Dissipative Structures


Book Description

"Dissipative structures" is a concept which has recently been used in physics to discuss the formation of structures organized in space and/or time at the expense of the energy flowing into the system from the outside. The space-time structural organization of biological systems starting from the subcellular level up to the level of ecological systems, coherent structures in laser and of elastic stability in mechanics, instability in hydro plasma physics, problems dynamics leading to the development of turbulence, behavior of electrical networks and chemical reactors form just a short list of problems treated in this framework. Mathematical models constructed to describe these systems are usually nonlinear, often formed by complicated systems of algebraic, ordinary differ ential, or partial differential equations and include a number of character istic parameters. In problems of theoretical interest as well as engineering practice, we are concerned with the dependence of solutions on parameters and particularly with the values of parameters where qualitatively new types of solutions, e.g., oscillatory solutions, new stationary states, and chaotic attractors, appear (bifurcate). Numerical techniques to determine both bifurcation points and the depen dence of steady-state and oscillatory solutions on parameters are developed and discussed in detail in this text. The text is intended to serve as a working manual not only for students and research workers who are interested in dissipative structures, but also for practicing engineers who deal with the problems of constructing models and solving complicated nonlinear systems.










Numerical Methods for Nonlinear Variational Problems


Book Description

This book describes the mathematical background and reviews the techniques for solving problems, including those that require large computations such as transonic flows for compressible fluids and the Navier-Stokes equations for incompressible viscous fluids. Finite element approximations and non-linear relaxation, and nonlinear least square methods are all covered in detail, as are many applications. This volume is a classic in a long-awaited softcover re-edition.




Nonclassical Thermoelastic Problems in Nonlinear Dynamics of Shells


Book Description

From the reviews: "A unique feature of this book is the nice blend of engineering vividness and mathematical rigour. [...] The authors are to be congratulated for their valuable contribution to the literature in the area of theoretical thermoelasticity and vibration of plates." Journal of Sound and Vibration




Computer Simulation of Dynamic Phenomena


Book Description

A description of computer programs for simulating phenomena in hydrodynamics, gas dynamics, and elastic plastic flow in one, two, and three dimensions. The text covers Maxwell's equations, and thermal and radiation diffusion, while the numerical procedures described permit the exact conservation of physical properties in the solutions of the fundamental laws of mechanics. The author also treats materials, including the use of simulation programs to predict material behavior.




Introduction to Numerical Continuation Methods


Book Description

Numerical continuation methods have provided important contributions toward the numerical solution of nonlinear systems of equations for many years. The methods may be used not only to compute solutions, which might otherwise be hard to obtain, but also to gain insight into qualitative properties of the solutions. Introduction to Numerical Continuation Methods, originally published in 1979, was the first book to provide easy access to the numerical aspects of predictor corrector continuation and piecewise linear continuation methods. Not only do these seemingly distinct methods share many common features and general principles, they can be numerically implemented in similar ways. The book also features the piecewise linear approximation of implicitly defined surfaces, the algorithms of which are frequently used in computer graphics, mesh generation, and the evaluation of surface integrals. To help potential users of numerical continuation methods create programs adapted to their particular needs, this book presents pseudo-codes and Fortran codes as illustrations. Since it first appeared, many specialized packages for treating such varied problems as bifurcation, polynomial systems, eigenvalues, economic equilibria, optimization, and the approximation of manifolds have been written. The original extensive bibliography has been updated in the SIAM Classics edition to include more recent references and several URLs so users can look for codes to suit their needs. Audience: this book continues to be useful for researchers and graduate students in mathematics, sciences, engineering, economics, and business. A background in elementary analysis and linear algebra are adequate prerequisites for reading this book; some knowledge from a first course in numerical analysis may also be helpful.




Large Eddy Simulation for Incompressible Flows


Book Description

First concise textbook on Large-Eddy Simulation, a very important method in scientific computing and engineering From the foreword to the third edition written by Charles Meneveau: "... this meticulously assembled and significantly enlarged description of the many aspects of LES will be a most welcome addition to the bookshelves of scientists and engineers in fluid mechanics, LES practitioners, and students of turbulence in general."




Mathematics of Large Eddy Simulation of Turbulent Flows


Book Description

The LES-method is rapidly developing in many practical applications in engineering The mathematical background is presented here for the first time in book form by one of the leaders in the field




Stochastic Optimization


Book Description

This book addresses stochastic optimization procedures in a broad manner. The first part offers an overview of relevant optimization philosophies; the second deals with benchmark problems in depth, by applying a selection of optimization procedures. Written primarily with scientists and students from the physical and engineering sciences in mind, this book addresses a larger community of all who wish to learn about stochastic optimization techniques and how to use them.