Computational Fluid Dynamics in Industrial Combustion


Book Description

Although many books have been written on computational fluid dynamics (CFD) and many written on combustion, most contain very limited coverage of the combination of CFD and industrial combustion. Furthermore, most of these books are written at an advanced academic level, emphasize theory over practice, and provide little help to engineers who need




Scientific Computing in Chemical Engineering


Book Description

Scientific Computing in Chemical Engineering gives the state of the art from the point of view of the numerical mathematicians as well as from the engineers. The application of modern methods in numerical mathematics on problems in chemical engineering, especially reactor modeling, process simulation, process optimization and the use of parallel computing is detailed.




Analysis and Reduction of Chemical Kinetics for Combustion Applications


Book Description

Combustion of fossil fuels has been used for decades for all kinds of purposes, from generating electricity to make air planes fly but they are also the main source of pollution leading to climate change. New sustainable, less polluting fuels must be studied in order to diminish as much as possible the human impact on the planet. Combustion is a very complex process combining fluid dynamics, thermodynamics and chemistry with hundreds of species involved. In order to be able to use all the tools the numerical simulation has to offer with increasing complexity, from canonical cases to 3D Large Eddy Simulations (LES) with two-phase flows, analysing the relevant chemical pathways and reducing the reaction mechanisms describing this chemistry is necessary. Analytically Reduced Chemistry (ARC) is a way of reducing the size and the complexity of chemical mechanisms where only the species and reactions relevant to given conditions are kept while keeping a physically coherent mechanism. ARC lies among several methodologies for the reduction of kinetics but with the increasing complexity of the fuels and configurations that need to be studied in the future years, it is now more and more interesting. The first objective of this work is to develop a fully automatic procedure for developing ARC mechanisms that do not require and expert knowledge on kinetics and can be adapted to any kind of conditions to be as versatile as possible. This objective has been fulfilled by the creation of the code ARCANE and the second objective was to assess its performances in two different configurations. The first configuration consists in the combustion of premixed hydrogen-enriched methane/air in a swirled combustor with 2 levels of enrichment in the solver AVBP. The ARC mechanism has been derived with the prediction of NOx and the addition of the chemiluminescent species OH*. The fully automatic reduction of this mechanism is proven to capture well the experimental results and the effect of the enrichment level on the flame structure. The presence of OH* in the mechanism allows for more direct comparison with experiments and is the start of a discussion about the actual identification of the flame structure. Numerical simulation is also used in this case for the prediction of the NOx emissions and how it is affected by the hydrogen enrichment. The second configuration consists in the reduction of 3 aviation fuels (conventional kerosene, sustainable aviation fuel (SAF) and high-aromatic content kerosene) described by 3-components surrogates. The reduction of each fuel is then used in canonical configurations of liquid droplets combustion. The discrete evaporation model implemented in AVBP allows to observe the effects of the preferential evaporation on the flame structure. Finally, the different fuels are compared to one another to identify their particularities and assess the benefits of the multi-component approach.




Mathematical Modelling of Gas-Phase Complex Reaction Systems: Pyrolysis and Combustion


Book Description

Mathematical Modelling of Gas-Phase Complex Reaction Systems: Pyrolysis and Combustion, Volume 45, gives an overview of the different steps involved in the development and application of detailed kinetic mechanisms, mainly relating to pyrolysis and combustion processes. The book is divided into two parts that cover the chemistry and kinetic models and then the numerical and statistical methods. It offers a comprehensive coverage of the theory and tools needed, along with the steps necessary for practical and industrial applications. - Details thermochemical properties and "ab initio" calculations of elementary reaction rates - Details kinetic mechanisms of pyrolysis and combustion processes - Explains experimental data for improving reaction models and for kinetic mechanisms assessment - Describes surrogate fuels and molecular reconstruction of hydrocarbon liquid mixtures - Describes pollutant formation in combustion systems - Solves and validates the kinetic mechanisms using numerical and statistical methods - Outlines optimal design of industrial burners and optimization and dynamic control of pyrolysis furnaces - Outlines large eddy simulation of turbulent reacting flows




Scientific Computing in Chemical Engineering II


Book Description

The application of modern methods in numerical mathematics on problems in chemical engineering is essential for designing, analyzing and running chemical processes and even entire plants. Scientific Computing in Chemical Engineering II gives the state of the art from the point of view of numerical mathematicians as well as that of engineers. The present volume as part of a two-volume edition covers topics such as computer-aided process design, combustion and flame, image processing, optimization, control, and neural networks. The volume is aimed at scientists, practitioners and graduate students in chemical engineering, industrial engineering and numerical mathematics.




Chemical Kinetics in Combustion and Reactive Flows: Modeling Tools and Applications


Book Description

Introduces advanced mathematical tools for the modeling, simulation, and analysis of chemical non-equilibrium phenomena in combustion and flows, following a detailed explanation of the basics of thermodynamics and chemical kinetics of reactive mixtures. Researchers, practitioners, lecturers, and graduate students will find this work valuable.




Turbulent Combustion Modeling


Book Description

Turbulent combustion sits at the interface of two important nonlinear, multiscale phenomena: chemistry and turbulence. Its study is extremely timely in view of the need to develop new combustion technologies in order to address challenges associated with climate change, energy source uncertainty, and air pollution. Despite the fact that modeling of turbulent combustion is a subject that has been researched for a number of years, its complexity implies that key issues are still eluding, and a theoretical description that is accurate enough to make turbulent combustion models rigorous and quantitative for industrial use is still lacking. In this book, prominent experts review most of the available approaches in modeling turbulent combustion, with particular focus on the exploding increase in computational resources that has allowed the simulation of increasingly detailed phenomena. The relevant algorithms are presented, the theoretical methods are explained, and various application examples are given. The book is intended for a relatively broad audience, including seasoned researchers and graduate students in engineering, applied mathematics and computational science, engine designers and computational fluid dynamics (CFD) practitioners, scientists at funding agencies, and anyone wishing to understand the state-of-the-art and the future directions of this scientifically challenging and practically important field.