Computational Mind: A Complex Dynamics Perspective


Book Description

This is a graduate–level monographic textbook in the field of Computational Intelligence. It presents a modern dynamical theory of the computational mind, combining cognitive psychology, artificial and computational intelligence, and chaos theory with quantum consciousness and computation. The book introduces to human and computational mind, comparing and contrasting main themes of cognitive psychology, artificial and computational intelligence.




Computational Mind: A Complex Dynamics Perspective


Book Description

This is a graduate–level monographic textbook in the field of Computational Intelligence. It presents a modern dynamical theory of the computational mind, combining cognitive psychology, artificial and computational intelligence, and chaos theory with quantum consciousness and computation. The book introduces to human and computational mind, comparing and contrasting main themes of cognitive psychology, artificial and computational intelligence.




Thinking in Complexity


Book Description

Since the first edition sold out in less than a year, we now present the revised second edition of Mainzer's popular book. The theory of nonlinear complex systems has become a successful problem-solving approach in the natural sciences from laser physics, quantum chaos, and meteorology to computer simulations of cell growth in biology. It is now recognized that many of our social, ecological, and political problems are also of a global, complex, and nonlinear nature. And one of the most exciting contemporary topics is the idea that even the human mind is governed largely by the nonlinear dynamics of complex systems. In this wide-ranging but concise treatment, Prof. Mainzer discusses, in a nontechnical language, the common framework behind these endeavors. Emphasis is given to the evolution of new structures in natural and cultural systems and we see clearly how the new integrative approach can give insights not available from traditional reductionistic methods.




Advances in Intelligent and Distributed Computing


Book Description

This book presents the proceedings of the 1st International Symposium on Intelligent and Distributed Computing, IDC 2007, held in Craiova, Romania, October 2007. Coverage includes: autonomous and adaptive computing; data mining and knowledge discovery; distributed problem solving and decision making; e-business, e-health and e-learning; genetic algorithms; image processing; information retrieval; intelligence in mobile and ubiquitous computing.




Engineering Evolutionary Intelligent Systems


Book Description

This edited volume deals with the theoretical and methodological aspects, as well as various evolutionary algorithm applications to many real world problems originating from science, technology, business and commerce. It comprises 15 chapters including an introductory chapter which covers the fundamental definitions and outlines some important research challenges. Chapters were selected on the basis of fundamental ideas/concepts rather than the thoroughness of techniques deployed.




Rule Extraction from Support Vector Machines


Book Description

Support vector machines (SVMs) are one of the most active research areas in machine learning. SVMs have shown good performance in a number of applications, including text and image classification. However, the learning capability of SVMs comes at a cost – an inherent inability to explain in a comprehensible form, the process by which a learning result was reached. Hence, the situation is similar to neural networks, where the apparent lack of an explanation capability has led to various approaches aiming at extracting symbolic rules from neural networks. For SVMs to gain a wider degree of acceptance in fields such as medical diagnosis and security sensitive areas, it is desirable to offer an explanation capability. User explanation is often a legal requirement, because it is necessary to explain how a decision was reached or why it was made. This book provides an overview of the field and introduces a number of different approaches to extracting rules from support vector machines developed by key researchers. In addition, successful applications are outlined and future research opportunities are discussed. The book is an important reference for researchers and graduate students, and since it provides an introduction to the topic, it will be important in the classroom as well. Because of the significance of both SVMs and user explanation, the book is of relevance to data mining practitioners and data analysts.




Robotic Exploration and Landmark Determination


Book Description

This book presents hardware-efficient algorithms and FPGA implementations for two robotic tasks, namely exploration and landmark determination. The work identifies scenarios for mobile robotics where parallel processing and selective shutdown offered by FPGAs are invaluable. The book proceeds to systematically develop memory-driven VLSI architectures for both the tasks. The architectures are ported to a low-cost FPGA with a fairly small number of system gates.




Quantitative Information Fusion for Hydrological Sciences


Book Description

In this rapidly evolving world of knowledge and technology, do you ever wonder how hydrology is catching up? Here, two highly qualified scientists edit a volume that takes the angle of computational hydrology and envision one of the science’s future directions – namely, the quantitative integration of high-quality hydrologic field data with geologic, hydrologic, chemical, atmospheric, and biological information to characterize and predict natural systems in hydrological sciences.




Case-Based Reasoning on Images and Signals


Book Description

This book is the ?rst edited book that deals with the special topic of signals and images within case-based reasoning (CBR). Signal-interpreting systems are becoming increasingly popular in medical, industrial, ecological, biotechnological and many other applications. Existing statisticalandknowledge-basedtechniqueslackrobustness,accuracy,and?- ibility. New strategies are needed that can adapt to changing environmental conditions, signal variation, user needs and process requirements. Introducing CBRstrategiesintosignal-interpretingsystemscansatisfytheserequirements. CBR can be used to control the signal-processing process in all phases of a signal-interpreting system to derive information of the highest possible qu- ity. Beyond this CBR o?ers di?erent learning capabilities, for all phases of a signal-interpretingsystem,thatsatisfydi?erentneedsduringthedevelopment process of a signal-interpreting system. In the outline of this book we summarize under the term “signal” signals of 1-dimensional, 2-dimensional or 3-dimensional nature. The unique data and the necessary computation techniques require ext- ordinary case representations, similarity measures and CBR strategies to be utilised. Signalinterpretation(1D,2D,or3Dsignalinterpretation)istheprocessof mapping the numerical representation of a signal into logical representations suitable for signal descriptions. A signal-interpreting system must be able to extract symbolic features from the raw data e.g., the image (e.g., irregular structure inside the nodule, area of calci?cation, and sharp margin). This is a complex process; the signal passes through several general processing steps before the ?nal symbolic description is obtained. The structure of the book is divided into a theoretical part and into an application-oriented part.




Foundations of Global Genetic Optimization


Book Description

Genetic algorithms today constitute a family of e?ective global optimization methods used to solve di?cult real-life problems which arise in science and technology. Despite their computational complexity, they have the ability to explore huge data sets and allow us to study exceptionally problematic cases in which the objective functions are irregular and multimodal, and where information about the extrema location is unobtainable in other ways. Theybelongtotheclassofiterativestochasticoptimizationstrategiesthat, during each step, produce and evaluate the set of admissible points from the search domain, called the random sample or population. As opposed to the Monte Carlo strategies, in which the population is sampled according to the uniform probability distribution over the search domain, genetic algorithms modify the probability distribution at each step. Mechanisms which adopt sampling probability distribution are transposed from biology. They are based mainly on genetic code mutation and crossover, as well as on selection among living individuals. Such mechanisms have been testedbysolvingmultimodalproblemsinnature,whichiscon?rmedinpart- ular by the many species of animals and plants that are well ?tted to di?erent ecological niches. They direct the search process, making it more e?ective than a completely random one (search with a uniform sampling distribution). Moreover,well-tunedgenetic-basedoperationsdonotdecreasetheexploration ability of the whole admissible set, which is vital in the global optimization process. The features described above allow us to regard genetic algorithms as a new class of arti?cial intelligence methods which introduce heuristics, well tested in other ?elds, to the classical scheme of stochastic global search.