Computational Modeling of Drugs Against Alzheimer’s Disease


Book Description

This second edition volume expands on the previous edition with updated descriptions on different computational methods encompassing ligand-based, structure-based, and combined approaches with their recent applications in anti-Alzheimer drug design. Different background topics like recent advancements in research on the development of novel therapies and their implications in the treatment of Alzheimer’s Disease (AD) have also been covered for completeness. Special topics like basic information science methods for insight into neurodegenerative pathogenesis, drug repositioning and network pharmacology, and online tools to predict ADMET behavior with reference to anti-Alzheimer drug development have also been included. In the Neuromethods series style, chapter include the kind of detail and key advice from the specialists needed to get successful results in your laboratory. Cutting-edge and thorough, Computational Modeling of Drugs Against Alzheimer’s Disease, Second Edition is a valuable resource for all researchers and scientists interested in learning more about this important and developing field.




Current Trends in Computational Modeling for Drug Discovery


Book Description

This contributed volume offers a comprehensive discussion on how to design and discover pharmaceuticals using computational modeling techniques. The different chapters deal with the classical and most advanced techniques, theories, protocols, databases, and tools employed in computer-aided drug design (CADD) covering diverse therapeutic classes. Multiple components of Structure-Based Drug Discovery (SBDD) along with its workflow and associated challenges are presented while potential leads for Alzheimer’s disease (AD), antiviral agents, anti-human immunodeficiency virus (HIV) drugs, and leads for Severe Fever with Thrombocytopenia Syndrome Virus (SFTSV) disease are discussed in detail. Computational toxicological aspects in drug design and discovery, screening adverse effects, and existing or future in silico tools are highlighted, while a novel in silico tool, RASAR, which can be a major technique for small to big datasets when not much experimental data are present, is presented. The book also introduces the reader to the major drug databases covering drug molecules, chemicals, therapeutic targets, metabolomics, and peptides, which are great resources for drug discovery employing drug repurposing, high throughput, and virtual screening. This volume is a great tool for graduates, researchers, academics, and industrial scientists working in the fields of cheminformatics, bioinformatics, computational biology, and chemistry.




Improving and Accelerating Therapeutic Development for Nervous System Disorders


Book Description

Improving and Accelerating Therapeutic Development for Nervous System Disorders is the summary of a workshop convened by the IOM Forum on Neuroscience and Nervous System Disorders to examine opportunities to accelerate early phases of drug development for nervous system drug discovery. Workshop participants discussed challenges in neuroscience research for enabling faster entry of potential treatments into first-in-human trials, explored how new and emerging tools and technologies may improve the efficiency of research, and considered mechanisms to facilitate a more effective and efficient development pipeline. There are several challenges to the current drug development pipeline for nervous system disorders. The fundamental etiology and pathophysiology of many nervous system disorders are unknown and the brain is inaccessible to study, making it difficult to develop accurate models. Patient heterogeneity is high, disease pathology can occur years to decades before becoming clinically apparent, and diagnostic and treatment biomarkers are lacking. In addition, the lack of validated targets, limitations related to the predictive validity of animal models - the extent to which the model predicts clinical efficacy - and regulatory barriers can also impede translation and drug development for nervous system disorders. Improving and Accelerating Therapeutic Development for Nervous System Disorders identifies avenues for moving directly from cellular models to human trials, minimizing the need for animal models to test efficacy, and discusses the potential benefits and risks of such an approach. This report is a timely discussion of opportunities to improve early drug development with a focus toward preclinical trials.




Drug-like Properties: Concepts, Structure Design and Methods


Book Description

Of the thousands of novel compounds that a drug discovery project team invents and that bind to the therapeutic target, typically only a fraction of these have sufficient ADME/Tox properties to become a drug product. Understanding ADME/Tox is critical for all drug researchers, owing to its increasing importance in advancing high quality candidates to clinical studies and the processes of drug discovery. If the properties are weak, the candidate will have a high risk of failure or be less desirable as a drug product. This book is a tool and resource for scientists engaged in, or preparing for, the selection and optimization process. The authors describe how properties affect in vivo pharmacological activity and impact in vitro assays. Individual drug-like properties are discussed from a practical point of view, such as solubility, permeability and metabolic stability, with regard to fundamental understanding, applications of property data in drug discovery and examples of structural modifications that have achieved improved property performance. The authors also review various methods for the screening (high throughput), diagnosis (medium throughput) and in-depth (low throughput) analysis of drug properties. - Serves as an essential working handbook aimed at scientists and students in medicinal chemistry - Provides practical, step-by-step guidance on property fundamentals, effects, structure-property relationships, and structure modification strategies - Discusses improvements in pharmacokinetics from a practical chemist's standpoint




Natural Product-based Synthetic Drug Molecules in Alzheimer's Disease


Book Description

This book illustrates the importance of natural products as the source for the development of novel drugs for the treatment of neurodegenerative disorders, including Alzheimer's disease. It also highlights the role of reactive oxygen species and altered metal homeostasis in the progression of Alzheimer’s disease and examines the potential of antioxidants and anti-chelating agents in the clinical intervention of neurodegenerative diseases. The book also discusses the role of neuroinflammation in the pathogenesis of Alzheimer’s disease. The chapters provide information about the drug targets, progress in the development of natural product-based therapeutics, biomarkers, fluorescent diagnostic tools, and theranostic for Alzheimer's disease. The book also provides information about the design and synthesis of natural product-based derivatives against the various targets of Alzheimer's disease including epigenetic targets and the metal dyshomeostasis hypothesis. Cutting across different disciplines, this book is a valuable source for neuroscientists, chemical biologists, pharmaceutical researchers, and synthetic biologists.




Computational Approaches: Drug Discovery and Design in Medicinal Chemistry and Bioinformatics


Book Description

This book is a collection of original research articles in the field of computer-aided drug design. It reports the use of current and validated computational approaches applied to drug discovery as well as the development of new computational tools to identify new and more potent drugs.




Alzheimer's Disease Drug Development


Book Description

Provides a definitive overview of the complex ecosystem facilitating Alzheimer's Disease drug research and development. Demonstrates a drug's journey from in the lab, clinical trial testing, regulatory review, and marketing by pharmaceutical companies. Details the use of artificial intelligence, clinical trial management, and financing models.







Advanced Machine Learning Approaches in Cancer Prognosis


Book Description

This book introduces a variety of advanced machine learning approaches covering the areas of neural networks, fuzzy logic, and hybrid intelligent systems for the determination and diagnosis of cancer. Moreover, the tactical solutions of machine learning have proved its vast range of significance and, provided novel solutions in the medical field for the diagnosis of disease. This book also explores the distinct deep learning approaches that are capable of yielding more accurate outcomes for the diagnosis of cancer. In addition to providing an overview of the emerging machine and deep learning approaches, it also enlightens an insight on how to evaluate the efficiency and appropriateness of such techniques and analysis of cancer data used in the cancer diagnosis. Therefore, this book focuses on the recent advancements in the machine learning and deep learning approaches used in the diagnosis of different types of cancer along with their research challenges and future directions for the targeted audience including scientists, experts, Ph.D. students, postdocs, and anyone interested in the subjects discussed.




Tau Biology


Book Description

This book presents essential studies and cutting-edge research results on tau, which is attracting increasing interest as a target for the treatment of Alzheimer's disease. Tau is well known as a microtubule-associated protein that is predominantly localized in the axons of neurons. In various forms of brain disease, neuronal loss occurs, with deposition of hyperphosphorylated tau in the remaining neurons. Important questions remain regarding the way in which tau forms hyperphosphorylated and fibrillar deposits in neurons, and whether tau aggregation represents the toxic pathway leading to neuronal death. With the help of new technologies, researchers are now solving these long-standing questions. In this book, readers will find the latest expert knowledge on all aspects of tau biology, including the structure and role of the tau molecule, tau localization and function, the pathology, drivers, and markers of tauopathies, tau aggregation, and treatments targeting tau. Tau Biology will be an invaluable source of information and fresh ideas for those involved in the development of more effective therapies and for all who seek a better understanding of the biology of the aging brain.