Computational Models of Complex Systems


Book Description

Computational and mathematical models provide us with the opportunities to investigate the complexities of real world problems. They allow us to apply our best analytical methods to define problems in a clearly mathematical manner and exhaustively test our solutions before committing expensive resources. This is made possible by assuming parameter(s) in a bounded environment, allowing for controllable experimentation, not always possible in live scenarios. For example, simulation of computational models allows the testing of theories in a manner that is both fundamentally deductive and experimental in nature. The main ingredients for such research ideas come from multiple disciplines and the importance of interdisciplinary research is well recognized by the scientific community. This book provides a window to the novel endeavours of the research communities to present their works by highlighting the value of computational modelling as a research tool when investigating complex systems. We hope that the readers will have stimulating experiences to pursue research in these directions.




Complex Adaptive Systems


Book Description

This book provides the first clear, comprehensive, and accessible account of complex adaptive social systems, by two of the field's leading authorities. Such systems--whether political parties, stock markets, or ant colonies--present some of the most intriguing theoretical and practical challenges confronting the social sciences. Engagingly written, and balancing technical detail with intuitive explanations, Complex Adaptive Systems focuses on the key tools and ideas that have emerged in the field since the mid-1990s, as well as the techniques needed to investigate such systems. It provides a detailed introduction to concepts such as emergence, self-organized criticality, automata, networks, diversity, adaptation, and feedback. It also demonstrates how complex adaptive systems can be explored using methods ranging from mathematics to computational models of adaptive agents. John Miller and Scott Page show how to combine ideas from economics, political science, biology, physics, and computer science to illuminate topics in organization, adaptation, decentralization, and robustness. They also demonstrate how the usual extremes used in modeling can be fruitfully transcended.







Modeling Complex Systems


Book Description

This book illustrates how models of complex systems are built up and provides indispensable mathematical tools for studying their dynamics. This second edition includes more recent research results and many new and improved worked out examples and exercises.




Think Complexity


Book Description

Dive into Python's advanced possibilities, including algorithm analysis, graphs, scale-free networks, and cellular automata with this in-depth, hands-on guide.




Modeling of Complex Systems


Book Description

Modeling of Complex Systems: An Introduction describes the framework of complex systems. This book discusses the language of system theory, taxonomy of system concepts, steps in model building, and establishing relations using physical laws. The statistical attributes of data, generation of random numbers fundamental problems of recognition, and input-output type models are also elaborated. This text likewise covers the optimization with equality constraints, transfer function models, and competition among species. This publication is written primarily for senior undergraduate students and beginning graduate students who are interested in an interdisciplinary or multidisciplinary approach to large-scale or complex problems of contemporary societal interest.




Computational Social Science and Complex Systems


Book Description

For many years, the development of large-scale quantitative social science was hindered by a lack of data. Traditional methods of data collection like surveys were very useful, but were limited. The situation has of course changed with the development of computing and information communication technology, and we now live in a world of data deluge, where the question has become how to extract important information from the plethora of data that can be accessed. Big Data has made it possible to study societal questions which were once impossible to deal with, but new tools and new multidisciplinary approaches are required. Physicists, together with economists, sociologists, computer scientists, etc. have played an important role in their development.This book presents the 9 lectures delivered at the CCIII Summer Course Computational Social Science and Complex Systems, held as part of the International School of Physics Enrico Fermi in Varenna, Italy, from 16-21 July 2018. The course had the aim of presenting some of the recent developments in the interdisciplinary fields of computational social science and econophysics to PhD students and young researchers, with lectures focused on recent problems investigated in computational social science.Addressing some of the basic questions and many of the subtleties of the emerging field of computational social science, the book will be of interest to students, researchers and advanced research professionals alike.




Understanding Complex Systems Through Computational Modeling and Simulation


Book Description

Traditional approaches are not sufficient, and sometimes impossible in dealing with complexity issues such as emergence, self-organization, evolution and adaptation of complex systems. As illustrated in this thesis by the practical work of the author in a real-life project, the spreading of infectious disease as well as interventions could be considered as difusion processes on complex networks of heterogeneous individuals in a society which is considered as a reactive system. Modeling of this system requires explicitly specifying of each individual's behaviors and (re)actions, and transforming them into computational model which has to be flexible, reusable, and ease of coding. Statechart, typical for model-based programming, is a good solution that the thesis proposes. Bottom-up agent based simulation finds emergence episodes in what-if scenarios that change rules governing agent's behaviors that requires agents to learn to adapt with these changes. Decision tree learning is proposed to bring more flexibility and legibility in modeling of agent's autonomous decision making during simulation runtime. Our proposition for computational models such as agent based models are complementary to traditional ones, and in some case they are unique solutions due to legal, ethical issues.




Complex Models and Computational Methods in Statistics


Book Description

The use of computational methods in statistics to face complex problems and highly dimensional data, as well as the widespread availability of computer technology, is no news. The range of applications, instead, is unprecedented. As often occurs, new and complex data types require new strategies, demanding for the development of novel statistical methods and suggesting stimulating mathematical problems. This book is addressed to researchers working at the forefront of the statistical analysis of complex systems and using computationally intensive statistical methods.




Complex Systems Modeling and Simulation in Economics and Finance


Book Description

This title brings together frontier research on complex economic systems, heterogeneous interacting agents, bounded rationality, and nonlinear dynamics in economics. The book contains the proceedings of the CEF2015 (21st Computing in Economics in Finance), held 20-22 June 2015 in Taipei, Taiwan, and addresses some of the important driving forces for various emergent properties in economies, when viewed as complex systems. The breakthroughs reported in this book are a result of an interdisciplinary approach and simulation remains the unifying theme for these papers as they deal with a wide range of topics in economics. The text is a valuable addition to the efforts in promoting the complex systems view in economic science. The computational experiments reported in the book are both transparent and replicable. Complex System Modeling and Simulation in Economics and Finance is useful for graduate courses of complex systems, with particular focus on economics and finance. At the same time it serves as a good overview for researchers who are interested in the topic.