Models of Information Processing in the Basal Ganglia


Book Description

This book brings together the biology and computational features of the basal ganglia and their related cortical areas along with select examples of how this knowledge can be integrated into neural network models. Recent years have seen a remarkable expansion of knowledge about the anatomical organization of the part of the brain known as the basal ganglia, the signal processing that occurs in these structures, and the many relations both to molecular mechanisms and to cognitive functions. This book brings together the biology and computational features of the basal ganglia and their related cortical areas along with select examples of how this knowledge can be integrated into neural network models. Organized in four parts - fundamentals, motor functions and working memories, reward mechanisms, and cognitive and memory operations - the chapters present a unique admixture of theory, cognitive psychology, anatomy, and both cellular- and systems- level physiology written by experts in each of these areas. The editors have provided commentaries as a helpful guide to each part. Many new discoveries about the biology of the basal ganglia are summarized, and their impact on the computational role of the forebrain in the planning and control of complex motor behaviors discussed. The various findings point toward an unexpected role for the basal ganglia in the contextual analysis of the environment and in the adaptive use of this information for the planning and execution of intelligent behaviors. Parallels are explored between these findings and new connectionist approaches to difficult control problems in robotics and engineering. Contributors James L. Adams, P. Apicella, Michael Arbib, Dana H. Ballard, Andrew G. Barto, J. Brian Burns, Christopher I. Connolly, Peter F. Dominey, Richard P. Dum, John Gabrieli, M. Garcia-Munoz, Patricia S. Goldman-Rakic, Ann M. Graybiel, P. M. Groves, Mary M. Hayhoe, J. R. Hollerman, George Houghton, James C. Houk, Stephen Jackson, Minoru Kimura, A. B. Kirillov, Rolf Kotter, J. C. Linder, T. Ljungberg, M. S. Manley, M. E. Martone, J. Mirenowicz, C. D. Myre, Jeff Pelz, Nathalie Picard, R. Romo, S. F. Sawyer, E Scarnat, Wolfram Schultz, Peter L. Strick, Charles J. Wilson, Jeff Wickens, Donald J. Woodward, S. J. Young




Computational Neuroscience Models of the Basal Ganglia


Book Description

The book is a compendium of the aforementioned subclass of models of Basal Ganglia, which presents some the key existent theories of Basal Ganglia function. The book presents computational models of basal ganglia-related disorders, including Parkinson’s disease, schizophrenia, and addiction. Importantly, it highlights the applications of understanding the role of the basal ganglia to treat neurological and psychiatric disorders. The purpose of the present book is to amend and expand on James Houk’s book (MIT press; ASIN: B010BF4U9K) by providing a comprehensive overview on computational models of the basal ganglia. This book caters to researchers and academics from the area of computational cognitive neuroscience.




Computational Models of Brain and Behavior


Book Description

A comprehensive Introduction to the world of brain and behavior computational models This book provides a broad collection of articles covering different aspects of computational modeling efforts in psychology and neuroscience. Specifically, it discusses models that span different brain regions (hippocampus, amygdala, basal ganglia, visual cortex), different species (humans, rats, fruit flies), and different modeling methods (neural network, Bayesian, reinforcement learning, data fitting, and Hodgkin-Huxley models, among others). Computational Models of Brain and Behavior is divided into four sections: (a) Models of brain disorders; (b) Neural models of behavioral processes; (c) Models of neural processes, brain regions and neurotransmitters, and (d) Neural modeling approaches. It provides in-depth coverage of models of psychiatric disorders, including depression, posttraumatic stress disorder (PTSD), schizophrenia, and dyslexia; models of neurological disorders, including Alzheimer’s disease, Parkinson’s disease, and epilepsy; early sensory and perceptual processes; models of olfaction; higher/systems level models and low-level models; Pavlovian and instrumental conditioning; linking information theory to neurobiology; and more. Covers computational approximations to intellectual disability in down syndrome Discusses computational models of pharmacological and immunological treatment in Alzheimer's disease Examines neural circuit models of serotonergic system (from microcircuits to cognition) Educates on information theory, memory, prediction, and timing in associative learning Computational Models of Brain and Behavior is written for advanced undergraduate, Master's and PhD-level students—as well as researchers involved in computational neuroscience modeling research.




Mathematical Foundations of Neuroscience


Book Description

This book applies methods from nonlinear dynamics to problems in neuroscience. It uses modern mathematical approaches to understand patterns of neuronal activity seen in experiments and models of neuronal behavior. The intended audience is researchers interested in applying mathematics to important problems in neuroscience, and neuroscientists who would like to understand how to create models, as well as the mathematical and computational methods for analyzing them. The authors take a very broad approach and use many different methods to solve and understand complex models of neurons and circuits. They explain and combine numerical, analytical, dynamical systems and perturbation methods to produce a modern approach to the types of model equations that arise in neuroscience. There are extensive chapters on the role of noise, multiple time scales and spatial interactions in generating complex activity patterns found in experiments. The early chapters require little more than basic calculus and some elementary differential equations and can form the core of a computational neuroscience course. Later chapters can be used as a basis for a graduate class and as a source for current research in mathematical neuroscience. The book contains a large number of illustrations, chapter summaries and hundreds of exercises which are motivated by issues that arise in biology, and involve both computation and analysis. Bard Ermentrout is Professor of Computational Biology and Professor of Mathematics at the University of Pittsburgh. David Terman is Professor of Mathematics at the Ohio State University.




Principles of Computational Modelling in Neuroscience


Book Description

Learn to use computational modelling techniques to understand the nervous system at all levels, from ion channels to networks.




The Hidden Life of the Basal Ganglia


Book Description

The anatomy and physiology of the basal ganglia and their relation to brain and behavior, disorders and therapies, and philosophy of mind and moral values. The main task of the basal ganglia—a group of subcortical nuclei, located at the base of the brain—is to optimize and execute our automatic behavior. In this book, Hagai Bergman analyzes the anatomy and physiology of the basal ganglia, discussing their relation to brain and behavior, to disorders and therapies, and even to moral values. Drawing on his forty years of studying the basal ganglia, Bergman presents new information on physiology and computational models, Parkinson’s disease and other ganglia-related disorders, and such therapies as deep brain stimulation. Focusing on studies of nonhuman primates and human basal ganglia and relying on system physiology and in vivo extra-cellular recording techniques, Bergman first describes the major brain structures that constitute the basal ganglia, the morphology of their cellular elements, their synaptic connectivity and their physiological function in health and disease. He discusses the computational physiology of the healthy basal ganglia, describing four generations of computational models, and then traces the computational physiology of basal ganglia–related disorders and their treatments, including Parkinson’s disease and its pharmacological and surgical therapies. Finally, Bergman considers the implications of these findings for such moral concerns as free will. Explaining this leap into domains rarely explored in neuroscientific accounts, Bergman writes that the longer he studies the basal ganglia, the more he is convinced that they are truly the base of both brain and mind.




Multiscale Models of Brain Disorders


Book Description

This book focuses on our current understanding of brain dynamics in various brain disorders (e.g. epilepsy, Alzheimer’s and Parkinson’s disease) and how the multi-scale, multi-level tools of computational neuroscience can enhance this understanding. In recent years, there have been significant advances in the study of the dynamics of the disordered brain at both the microscopic and the macroscopic levels. This understanding can be furthered by the application of multi-scale computational models as integrative principles that may link single neuron dynamics and the dynamics of local and distant brain regions observed using human EEG, ERPs, MEG, LFPs and fMRI. Focusing on the computational models that are used to study movement, memory and cognitive disorders as well as epilepsy and consciousness related diseases, the book brings together physiologists and anatomists investigating cortical circuits; cognitive neuroscientists studying brain dynamics and behavior by means of EEG and functional magnetic resonance imaging (fMRI); and computational neuroscientists using neural modeling techniques to explore local and large-scale disordered brain dynamics. Covering topics that have a significant impact on the field of medicine, neuroscience and computer science, the book appeals to a diverse group of investigators.




Fundamentals of Neural Network Modeling


Book Description

Provides an introduction to the neural network modeling of complex cognitive and neuropsychological processes. Over the past few years, computer modeling has become more prevalent in the clinical sciences as an alternative to traditional symbol-processing models. This book provides an introduction to the neural network modeling of complex cognitive and neuropsychological processes. It is intended to make the neural network approach accessible to practicing neuropsychologists, psychologists, neurologists, and psychiatrists. It will also be a useful resource for computer scientists, mathematicians, and interdisciplinary cognitive neuroscientists. The editors (in their introduction) and contributors explain the basic concepts behind modeling and avoid the use of high-level mathematics. The book is divided into four parts. Part I provides an extensive but basic overview of neural network modeling, including its history, present, and future trends. It also includes chapters on attention, memory, and primate studies. Part II discusses neural network models of behavioral states such as alcohol dependence, learned helplessness, depression, and waking and sleeping. Part III presents neural network models of neuropsychological tests such as the Wisconsin Card Sorting Task, the Tower of Hanoi, and the Stroop Test. Finally, part IV describes the application of neural network models to dementia: models of acetycholine and memory, verbal fluency, Parkinsons disease, and Alzheimer's disease. Contributors J. Wesson Ashford, Rajendra D. Badgaiyan, Jean P. Banquet, Yves Burnod, Nelson Butters, John Cardoso, Agnes S. Chan, Jean-Pierre Changeux, Kerry L. Coburn, Jonathan D. Cohen, Laurent Cohen, Jose L. Contreras-Vidal, Antonio R. Damasio, Hanna Damasio, Stanislas Dehaene, Martha J. Farah, Joaquin M. Fuster, Philippe Gaussier, Angelika Gissler, Dylan G. Harwood, Michael E. Hasselmo, J, Allan Hobson, Sam Leven, Daniel S. Levine, Debra L. Long, Roderick K. Mahurin, Raymond L. Ownby, Randolph W. Parks, Michael I. Posner, David P. Salmon, David Servan-Schreiber, Chantal E. Stern, Jeffrey P. Sutton, Lynette J. Tippett, Daniel Tranel, Bradley Wyble




Computational Cognitive Neuroscience


Book Description

Introduction to computer modeling of the brain, to understand how people think. Networks of interacting neurons produce complex emergent behavior including perception, attention, motor control, learning, memory, language, and executive functions (motivation, decision making, planning, etc).




GABA and the Basal Ganglia


Book Description

Over the past 25 years the amount of data pertaining to the GABAergic function in the basal ganglia has increased dramatically. GABA and the Basal Ganglia - From Molecules to Systems is a comprehensive review of the current state-of-the-art of knowledge about the neuroanatomy, neuropharmacology and neurophysiology of the basal ganglia, focusing on its GABAergic microcircuitry. It serves as a complete reference to the body of knowledge about the basal ganglia, its constituent neurons, and their interconnections. This volume is designed to serve as a convenient all-in-one review and reference for experienced basal ganglia researchers as well as an introduction to the functional organization of the basal ganglia and its GABAergic circuitry for students and researchers new to the field.* Reviews the anatomy, physiology and pharmacology of the basal ganglia itself in addition to focusing on the GABAergic circuitry of the basal ganglia* Authors of each chapter leading internationally acclaimed experts in basal ganglia research