Computational Science and Its Applications


Book Description

Computational science seeks to gain understanding of science through the use and analysis of mathematical models on high performance computers. The topics covered are gravitational waves, applications of wavelet and fractals, modeling by partial differential equations on flat structure as, production of natural calamities and diseases, etc




Computational Science and Its Applications – ICCSA 2018


Book Description

The five volume set LNCS 10960 until 10964 constitutes the refereed proceedings of the 18th International Conference on Computational Science and Its Applications, ICCSA 2018, held in Melbourne, Australia, in July 2018. Apart from the general tracks, ICCSA 2018 also includes 34 international workshops in various areas of computational sciences, ranging from computational science technologies, to specific areas of computational sciences, such as computer graphics and virtual reality. The total of 265 full papers and 10 short papers presented in the 5-volume proceedings set of ICCSA 2018, were carefully reviewed and selected from 892 submissions.




Introduction to Computational Science


Book Description

The essential introduction to computational science—now fully updated and expanded Computational science is an exciting new field at the intersection of the sciences, computer science, and mathematics because much scientific investigation now involves computing as well as theory and experiment. This textbook provides students with a versatile and accessible introduction to the subject. It assumes only a background in high school algebra, enables instructors to follow tailored pathways through the material, and is the only textbook of its kind designed specifically for an introductory course in the computational science and engineering curriculum. While the text itself is generic, an accompanying website offers tutorials and files in a variety of software packages. This fully updated and expanded edition features two new chapters on agent-based simulations and modeling with matrices, ten new project modules, and an additional module on diffusion. Besides increased treatment of high-performance computing and its applications, the book also includes additional quick review questions with answers, exercises, and individual and team projects. The only introductory textbook of its kind—now fully updated and expanded Features two new chapters on agent-based simulations and modeling with matrices Increased coverage of high-performance computing and its applications Includes additional modules, review questions, exercises, and projects An online instructor's manual with exercise answers, selected project solutions, and a test bank and solutions (available only to professors) An online illustration package is available to professors




Applications of Computational Science in Artificial Intelligence


Book Description

Computational science, in collaboration with engineering, acts as a bridge between hypothesis and experimentation. It is essential to use computational methods and their applications in order to automate processes as many major industries rely on advanced modeling and simulation. Computational science is inherently interdisciplinary and can be used to identify and evaluate complicated systems, foresee their performance, and enhance procedures and strategies. Applications of Computational Science in Artificial Intelligence delivers technological solutions to improve smart technologies architecture, healthcare, and environmental sustainability. It also provides background on key aspects such as computational solutions, computation framework, smart prediction, and healthcare solutions. Covering a range of topics such as high-performance computing and software infrastructure, this reference work is ideal for software engineers, practitioners, researchers, scholars, academicians, instructors, and students.




Computational Science and Its Applications - ICCSA 2005


Book Description

The four-volume set LNCS 3480-3483 constitutes the refereed proceedings of the International Conference on Computational Science and Its Applications, ICCSA 2005, held in Singapore in May 2005. The four volumes present a total of 540 papers selected from around 2700 submissions. The papers span the whole range of computational science, comprising advanced applications in virtually all sciences making use of computational techniques as well as foundations, techniques, and methodologies from computer science and mathematics, such as high performance computing and communication, networking, optimization, information systems and technologies, scientific visualization, graphics, image processing, data analysis, simulation and modelling, software systems, algorithms, security, multimedia etc.




Computational Science and Its Applications - ICCSA 2005Part II


Book Description

The four-volume set LNCS 3480-3483 constitutes the refereed proceedings of the International Conference on Computational Science and Its Applications, ICCSA 2005, held in Singapore in May 2005. The four volumes present a total of 540 papers selected from around 2700 submissions. The papers span the whole range of computational science, comprising advanced applications in virtually all sciences making use of computational techniques as well as foundations, techniques, and methodologies from computer science and mathematics, such as high performance computing and communication, networking, optimization, information systems and technologies, scientific visualization, graphics, image processing, data analysis, simulation and modelling, software systems, algorithms, security, multimedia etc.




Performance Tuning of Scientific Applications


Book Description

With contributions from some of the most notable experts in the field, Performance Tuning of Scientific Applications presents current research in performance analysis. The book focuses on the following areas.Performance monitoring: Describes the state of the art in hardware and software tools that are commonly used for monitoring and measuring perf




An Introduction to Computational Science


Book Description

This textbook provides an introduction to the growing interdisciplinary field of computational science. It combines a foundational development of numerical methods with a variety of illustrative applications spread across numerous areas of science and engineering. The intended audience is the undergraduate who has completed introductory coursework in mathematics and computer science. Students gain computational acuity by authoring their own numerical routines and by practicing with numerical methods as they solve computational models. This education encourages students to learn the importance of answering: How expensive is a calculation, how trustworthy is a calculation, and how might we model a problem to apply a desired numerical method? The text is written in two parts. Part I provides a succinct, one-term inauguration into the primary routines on which a further study of computational science rests. The material is organized so that the transition to computational science from coursework in calculus, differential equations, and linear algebra is natural. Beyond the mathematical and computational content of Part I, students gain proficiency with elemental programming constructs and visualization, which are presented in MATLAB syntax. The focus of Part II is modeling, wherein students build computational models, compute solutions, and report their findings. The models purposely intersect numerous areas of science and engineering to demonstrate the pervasive role played by computational science.




Fundamentals of Scientific Computing


Book Description

The book of nature is written in the language of mathematics -- Galileo Galilei How is it possible to predict weather patterns for tomorrow, with access solely to today’s weather data? And how is it possible to predict the aerodynamic behavior of an aircraft that has yet to be built? The answer is computer simulations based on mathematical models – sets of equations – that describe the underlying physical properties. However, these equations are usually much too complicated to solve, either by the smartest mathematician or the largest supercomputer. This problem is overcome by constructing an approximation: a numerical model with a simpler structure can be translated into a program that tells the computer how to carry out the simulation. This book conveys the fundamentals of mathematical models, numerical methods and algorithms. Opening with a tutorial on mathematical models and analysis, it proceeds to introduce the most important classes of numerical methods, with finite element, finite difference and spectral methods as central tools. The concluding section describes applications in physics and engineering, including wave propagation, heat conduction and fluid dynamics. Also covered are the principles of computers and programming, including MATLAB®.




Computational Intelligence And Its Applications: Evolutionary Computation, Fuzzy Logic, Neural Network And Support Vector Machine Techniques


Book Description

This book focuses on computational intelligence techniques and their applications — fast-growing and promising research topics that have drawn a great deal of attention from researchers over the years. It brings together many different aspects of the current research on intelligence technologies such as neural networks, support vector machines, fuzzy logic and evolutionary computation, and covers a wide range of applications from pattern recognition and system modeling, to intelligent control problems and biomedical applications. Fundamental concepts and essential analysis of various computational techniques are presented to offer a systematic and effective tool for better treatment of different applications, and simulation and experimental results are included to illustrate the design procedure and the effectiveness of the approaches./a