Molecular Bioenergetics


Book Description

All living things rely on the efficient storage, transduction, and use of energy. For example, all free energy used by biological systems originates from solar energy stored by photosynthesis and its effective use relies on its transformation from one form to the other. In this volume, leaders in the fields of computational modeling of electron transfer, proton transfer, proton-couples electron transfer, and energy transduction present new methods for simulating bioenergetic processes and summarize applications to proteins, including the photosynthetic reaction center, bacteriorhodopsin, and cytochrome c.







Handbook of Synthetic Photochemistry


Book Description

Unique in its focus on preparative impact rather than mechanistic details, this handbook provides an overview of photochemical reactions classed according to the structural feature that is built in the photochemical step, so as to facilitate use by synthetic chemists unfamiliar with this topic. An introductory section covers practical questions on how to run a photochemical reaction, while all classes of the most important photocatalytic reactions are also included. Perfect for organic synthetic chemists in academia and industry.




Dynamics of Systems on the Nanoscale


Book Description

This book presents the structure formation and dynamics of animate and inanimate matter on the nanometre scale. This is a new interdisciplinary field known as Meso-Bio-Nano (MBN) science that lies at the intersection of physics, chemistry, biology and material science. Special attention in the book is devoted to investigations of the structure, properties and dynamics of complex MBN systems by means of photonic, electronic, heavy particle and atomic collisions. This includes problems of fusion and fission, fragmentation, surfaces and interfaces, reactivity, nanoscale phase and morphological transitions, irradiation-driven transformations of complex molecular systems, collective electron excitations, radiation damage and biodamage, channeling phenomena and many more. Emphasis in the book is placed on the theoretical and computational physics research advances in these areas and related state-of-the-art experiments. Particular attention in the book is devoted to the utilization of advanced computational techniques and high-performance computing in studies of the dynamics of systems.




Practical Aspects of Computational Chemistry IV


Book Description

The editors of this volume have compiled an important book that is a useful vehicle for important computational research - in the development of theoretical methodologies and their practical applications. Themes include new methodologies, state-of-the-art computational algorithms and hardware as well as new applications. This volume, Practical Aspects of Computational Chemistry IV, is part of a continuous effort by the editors to document recent progress made by eminent researchers. Most of these chapters have been collected from invited speakers from the annual international meeting: “Current Trends in Computational Chemistry” organized by Jerzy Leszczynski, one of the editors of the current volume. This conference series has become an exciting platform for eminent Theoretical/Computational Chemists to discuss their recent findings and is regularly honored by the presence of Nobel laureates. Certainly, it is not possible to cover all topics related to the Computational Chemistry in a single volume but we hope that the recent contributions in the latest volume of this collection adequately highlight this important scientific area.




Light Harvesting in Photosynthesis


Book Description

This landmark collective work introduces the physical, chemical, and biological principles underlying photosynthesis: light absorption, excitation energy transfer, and charge separation. It begins with an introduction to properties of various pigments, and the pigment proteins in plant, algae, and bacterial systems. It addresses the underlying physics of light harvesting and key spectroscopic methods, including data analysis. It discusses assembly of the natural system, its energy transfer properties, and regulatory mechanisms. It also addresses light-harvesting in artificial systems and the impact of photosynthesis on our environment. The chapter authors are amongst the field’s world recognized experts. Chapters are divided into five main parts, the first focused on pigments, their properties and biosynthesis, and the second section looking at photosynthetic proteins, including light harvesting in higher plants, algae, cyanobacteria, and green bacteria. The third part turns to energy transfer and electron transport, discussing modeling approaches, quantum aspects, photoinduced electron transfer, and redox potential modulation, followed by a section on experimental spectroscopy in light harvesting research. The concluding final section includes chapters on artificial photosynthesis, with topics such as use of cyanobacteria and algae for sustainable energy production. Robert Croce is Head of the Biophysics Group and full professor in biophysics of photosynthesis/energy at Vrije Universiteit, Amsterdam. Rienk van Grondelle is full professor at Vrije Universiteit, Amsterdam. Herbert van Amerongen is full professor of biophysics in the Department of Agrotechnology and Food Sciences at Wageningen University, where he is also director of the MicroSpectroscopy Research Facility. Ivo van Stokkum is associate professor in the Department of Physics and Astronomy, Faculty of Sciences, at Vrije Universiteit, Amsterdam.




The Purple Phototrophic Bacteria


Book Description

Here is a comprehensive survey of all aspects of these fascinating bacteria, metabolically the most versatile organisms on Earth. It compiles 48 chapters written by leading experts, who highlight the huge progress made in studies of these bacteria since 1995.




Metal Sites in Proteins and Models


Book Description

Biological chemistry is a major frontier of inorganic chemistry. Three special volumes devoted to Metal Sites in Proteins and Models address the questions: how unusual ("entatic") are metal sites in metalloproteins and metalloenzymes compared to those in small coordination complexes? and if they are special, how do polypeptide chains and co-factors control this? The chapters deal with iron, with metal centres acting as Lewis acids, metals in phosphate enzymes, with vanadium, and with the wide variety of transition metal ions which act as redox centres. They illustrate in particular how the combined armoury of genetics and structure determination at the molecular level are providing unprecedented new tools for molecular engineering.




Dynamics of Molecular Collisions


Book Description

Activity in any theoretical area is usually stimulated by new experimental techniques and the resulting opportunity of measuring phenomena that were previously inaccessible. Such has been the case in the area under consideration he re beginning about fifteen years aga when the possibility of studying chemical reactions in crossed molecular beams captured the imagination of physical chemists, for one could imagine investigating chemical kinetics at the same level of molecular detail that had previously been possible only in spectroscopic investigations of molecular stucture. This created an interest among chemists in scattering theory, the molecular level description of a bimolecular collision process. Many other new and also powerful experimental techniques have evolved to supplement the molecular be am method, and the resulting wealth of new information about chemical dynamics has generated the present intense activity in molecular collision theory. During the early years when chemists were first becoming acquainted with scattering theory, it was mainly a matter of reading the physics literature because scattering experiments have long been the staple of that field. It was natural to apply the approximations and models that had been developed for nuclear and elementary particle physics, and although some of them were useful in describing molecular collision phenomena, many were not.