Computed Electron Micrographs And Defect Identification


Book Description

Computed Electron Micrographs and Defect Identification illustrates a technique for identifying defects in crystalline solids by the comparison of their images, which are produced in the electron microscope, with corresponding theoretical images. This book discusses the diffraction of electrons by a crystal; the two-beam dynamical equations; the absorption parameters; the deviation of the crystal from the Bragg reflecting position; the extinction distance; the displacement vector; and the foil normal. Chapter three presents the experimental techniques for determination of beam direction, defect line normal, foil normal, foil thickness, and extinction distance. Chapters four to seven explore ONEDIS and TWODIS and their principles. Chapters eight and nine focus on the application and limitations of the technique, while the last chapter explores the different computer programs related to the technique. Post-graduate students, as well as researchers using transmission electron microscopy for studying defects in crystalline solids, will find this book invaluable.







Diffraction and Imaging Techniques in Material Science P1


Book Description

Diffraction and Imaging Techniques in Material Science describes the various methods used to study the atomic structure of matter at an atomic scale based on the interaction between matter and radiation. It classifies the possible methods of observation by making a list of radiations on the basis of wavelength, including ions, X-ray photons, neutrons, and electrons. It also discusses transmission electron microscopy, the weak-beam method of electron microscopy, and some applications of transmission electron microscopy to phase transitions. Organized into 13 chapters, this volume begins with an overview of the kinematic theory of electron diffraction and the ways to treat diffraction by a deformed crystal. It discusses the dynamical theory of diffraction of fast electrons, the treatment of absorption in the dynamical theory of electron diffraction, the use of electron microscopy to study planar interfaces, and analysis of weak-beam images. The book also covers the use of computed electron micrographs in defect identification, crystallographic analysis of dislocation loops containing shear components, and detection and identification of small coherent particles. In addition, the reader is introduced to interpretation of diffuse scattering and short-range order, along with the crystallography of martensitic transformations. The remaining chapters focus on the working principle of the transmission electron microscope, experimental structure imaging of crystals, and the study of diffuse scattering effects originating from substitutional disorder and displacement disorder. The information on diffraction and imaging techniques in material science contained in this book will be helpful to students, researchers, and scientists.













Electron Microscopy in Mineralogy


Book Description

During the last five years transmission electron microscopy (TEM) has added numerous important new data to mineralogy and has considerably changed its outlook. This is partly due to the fact that metallurgists and crystal physicists having solved most of the structural and crystallographic problems in metals have begun to show a widening interest in the much more complicated structures of minerals, and partly to recent progress in experimental techniques, mainly the availability of ion-thinning devices. While electron microscopists have become increasingly interested in minerals (judging from special symposia at recent meetings such as Fifth European Congress on Electron microscopy, Man chester 1972; Eight International Congress on Electron Microscopy, Canberra 1974) mineralogists have realized advantages of the new technique and applied it with increasing frequency. In an effort to coordinate the growing quantity of research, electron microscopy sessions have been included in meetings of mineralogists (e. g. Geological Society of America, Minneapolis, 1972, American Crystallographic Association, Berkeley, 1974). The tremendous response for the TEM symposium which H. -R. Wenk and G. Thomas organized at the Berkeley Conference of the American Crystallographic Association formed the basis for this book. It appeared useful at this stage to summarize the achievements of electron microscopy, scattered in many different journals in several different fields and present them to mineralogists. A group of participants as the Berkeley symposium formed an Editorial Committee and outlined the content of this book.




High-Resolution Transmission Electron Microscopy


Book Description

This book provides an introduction to the fundamental concepts, techniques, and methods used for electron microscopy at high resolution in space, energy, and even in time. It delineates the theory of elastic scattering, which is most useful for spectroscopic and chemical analyses. There are also discussions of the theory and practice of image calculations, and applications of HRTEM to the study of solid surfaces, highly disordered materials, solid state chemistry, mineralogy, semiconductors and metals. Contributors include J. Cowley, J. Spence, P. Buseck, P. Self, and M.A. O'Keefe. Compiled by experts in the fields of geology, physics and chemistry, this comprehensive text will be the standard reference for years to come.




Transmission Electron Microscopy and Diffractometry of Materials


Book Description

This book explains concepts of transmission electron microscopy (TEM) and x-ray diffractometry (XRD) that are important for the characterization of materials. The fourth edition adds important new techniques of TEM such as electron tomography, nanobeam diffraction, and geometric phase analysis. A new chapter on neutron scattering completes the trio of x-ray, electron and neutron diffraction. All chapters were updated and revised for clarity. The book explains the fundamentals of how waves and wavefunctions interact with atoms in solids, and the similarities and differences of using x-rays, electrons, or neutrons for diffraction measurements. Diffraction effects of crystalline order, defects, and disorder in materials are explained in detail. Both practical and theoretical issues are covered. The book can be used in an introductory-level or advanced-level course, since sections are identified by difficulty. Each chapter includes a set of problems to illustrate principles, and the extensive Appendix includes laboratory exercises.




The Growth of Electron Microscopy


Book Description

As a complement to The Beginnings of Electron Microscopy, Advances in Imaging and Electron Physics is pleased to present Volume 96, The Growth of Electron Microscopy. This comprehensive collection of articles surveys the accomplishments of various national groups that comprise the International Federation of Societies of Electron Microscopy (IFSEM).