Computer Aided Design of Electrical Machines


Book Description

The aim of this book is to present the sequential steps for developing the computer programs for the design of electrical machines, using well-established design formulae. The data of magnetic and non-magnetic materials used in latest designs by industries, is applied for optimizing the design







Design of Electrical Machines


Book Description




Computer-Aided Analysis and Design of Switch-Mode Power Supplies


Book Description

This comprehensive reference/text explains the development and principles of operation, modelling, and analysis of switch-mode power supplies (SMPS)-highlighting conversion efficiency, size, and steady state/transient regulation characteristics.;Covering the practical design techniques of SMPS,this book - reveals how to develop specific models of circuits and components for simulation and design purposes; explains both the computer simulation of the switching behaviours of dc-to-dc converters and the modelling of linear and nonlinear circuit components; deals with the modelling and simulation of the low-frequency behaviours of converters (including current-controlled converters and converters with multiple outputs) and regulators; describes computer-aided design (CAD) techniques as applied to converters and regulators; introduces the principles and design of quasi-resonant and resonant converters; provides details on SPICE, a circuit simulator package used to calculate electrical circuit behaviour.;Containing over 1000 helpful drawings, equations, and tables, this is a valuable reference for circuit design, electrical, and electronics engineers, and serves as an excellent text for upper-level undergraduate and graduate students in these disciplines.




Multiphysics Simulation by Design for Electrical Machines, Power Electronics and Drives


Book Description

Presents applied theory and advanced simulation techniques for electric machines and drives This book combines the knowledge of experts from both academia and the software industry to present theories of multiphysics simulation by design for electrical machines, power electronics, and drives. The comprehensive design approach described within supports new applications required by technologies sustaining high drive efficiency. The highlighted framework considers the electric machine at the heart of the entire electric drive. The book also emphasizes the simulation by design concept—a concept that frames the entire highlighted design methodology, which is described and illustrated by various advanced simulation technologies. Multiphysics Simulation by Design for Electrical Machines, Power Electronics and Drives begins with the basics of electrical machine design and manufacturing tolerances. It also discusses fundamental aspects of the state of the art design process and includes examples from industrial practice. It explains FEM-based analysis techniques for electrical machine design—providing details on how it can be employed in ANSYS Maxwell software. In addition, the book covers advanced magnetic material modeling capabilities employed in numerical computation; thermal analysis; automated optimization for electric machines; and power electronics and drive systems. This valuable resource: Delivers the multi-physics know-how based on practical electric machine design methodologies Provides an extensive overview of electric machine design optimization and its integration with power electronics and drives Incorporates case studies from industrial practice and research and development projects Multiphysics Simulation by Design for Electrical Machines, Power Electronics and Drives is an incredibly helpful book for design engineers, application and system engineers, and technical professionals. It will also benefit graduate engineering students with a strong interest in electric machines and drives.




Numerical Modelling and Design of Electrical Machines and Devices


Book Description

This text provides an overview of numerical field computational methods and, in particular, of the finite element method (FEM) in magnetics. Detailed attention is paid to the practical use of the FEM in designing electromagnetic devices such as motors, transformers and actuators. Based on the authors' extensive experience of teaching numerical techniques to students and design engineers, the book is ideal for use as a text at undergraduate and graduate level, or as a primer for practising engineers who wish to learn the fundamentals and immediately apply these to actual design problems. Contents: Introduction; Computer Aided Design in Magnetics; Electromagnetic Fields; Potentials and Formulations; Field Computation and Numerical Techniques; Coupled Field Problems; Numerical Optimisation; Linear System Equation Solvers; Modelling of Electrostatic and Magnetic Devices; Examples of Computed Models.




Electrical Machine Design


Book Description

Electrical Machine Design caters to the requirements of undergraduate and postgraduate students of electrical engineering and industry novices. The authors have adopted a flow chart based approach to explain the subject. This enables an in-depth understanding of the design of different types of electrical machines with an appropriate introduction to basic design considerations and the magnetic circuits involved. The book aids students to prepare for various competitive exams through objective questions, worked-out examples and review questions in increasing order of difficulty. MATLAB and C programs and Finite Element simulations using Motor Solve, featured in the text offers a profound new perspective in understanding of automated design of electrical machines.




Mathematical Models for the Design of Electrical Machines


Book Description

This book is a comprehensive set of articles reflecting the latest advances and developments in mathematical modeling and the design of electrical machines for different applications. The main models discussed are based on the: i) Maxwell–Fourier method (i.e., the formal resolution of Maxwell’s equations by using the separation of variables method and the Fourier’s series in 2-D or 3-D with a quasi-Cartesian or polar coordinate system); ii) electrical, thermal and magnetic equivalent circuit; iii) hybrid model. In these different papers, the numerical method and the experimental tests have been used as comparisons or validations.







Computer-Aided Design in Magnetics


Book Description

Computer-aided design has come of age in the magnetic devices industry. From its early beginnings in the 1960s, when the precision needs of the experimental physics community first created a need for computational aids to magnet design, CAD software has grown to occupy an important spot in the industrial designer's tool kit. Numerous commercial CAD systems are now available for magnetics work, and many more software packages are used in-house by large industrial firms. While their capabilities vary, all these software systems share a very substantial common core of both methodology and objec tives. The present need, particularly in medium-sized and nonspecialist firms, is for an understanding of how to make effective use of these new and immensely powerful tools: what approximations are inherent in the methods, what quantities can be calculated, and how to relate the com puted results to the needs of the designer. These new analysis techniques profoundly affect the designer's approach to problems, since the analytic tools available exert a strong influence on the conceptual models people build, and these in turn dictate the manner in which they formulate prob lems. The impact of CAD is just beginning to be felt industrially, and the authors believe this is an early, but not too early, time to collect together some of the experience which has now accumulated among industrial and research users of magnetics analysis systems.