Computer Aided Engineering of Batteries


Book Description

This edited volume, with contributions from the Computer Aided Engineering for Batteries (CAEBAT) program, provides firsthand insights into nuances of implementing battery models in actual geometries. It discusses practical examples and gaps in our understanding, while reviewing in depth the theoretical background and algorithms. Over the last ten years, several world-class academics, automotive original equipment manufacturers (OEMs), battery cell manufacturers and software developers worked together under an effort initiated by the U.S. Department of Energy to develop mature, validated modeling tools to simulate design, performance, safety and life of automotive batteries. Until recently, battery modeling was a niche focus area with a relatively small number of experts. This book opens up the research topic for a broader audience from industry and academia alike. It is a valuable resource for anyone who works on battery engineering but has limited hands-on experience with coding.




Computer Aided Engineering of Batteries


Book Description

This edited volume, with contributions from the Computer Aided Engineering for Batteries (CAEBAT) program, provides firsthand insights into nuances of implementing battery models in actual geometries. It discusses practical examples and gaps in our understanding, while reviewing in depth the theoretical background and algorithms. Over the last ten years, several world-class academics, automotive original equipment manufacturers (OEMs), battery cell manufacturers and software developers worked together under an effort initiated by the U.S. Department of Energy to develop mature, validated modeling tools to simulate design, performance, safety and life of automotive batteries. Until recently, battery modeling was a niche focus area with a relatively small number of experts. This book opens up the research topic for a broader audience from industry and academia alike. It is a valuable resource for anyone who works on battery engineering but has limited hands-on experience with coding.




Energy Storage Technologies in Grid Modernization


Book Description

ENERGY STORAGE TECHNOLOGIES IN GRID MODERNIZATION Written and edited by a team of experts, this exciting new volume discusses the various types of energy storage technologies, the applications of energy storage systems, their role in the real-time operation of power markets, and the operational issues of modern power systems, including renewable-based generating sources. The worldwide energy sector, specifically power generation, has undergone a huge transformation in recent years, and the focus is to make it sustainable, environmentally friendly, reliable, and highly efficient. As a result, a significant share of highly intermittent but clean renewable sources is being integrated into the power system using advanced technological components. The higher penetration level of renewable energy sources (RESs) has increased the active power generation share in the grid but reduced the total rotating system inertia. This high reduction in inertia brings new challenges and technical issues to the operators of modern power systems and impacts the stability and security of the grid. The stochasticity of these renewable sources also poses a big challenge to the efficient operation of the power system. Electrical energy storage systems help to manage such issues and challenges that occur due to the intermittent nature of RES and can play a big role in the smooth and reliable operation of the power system. The applications and opportunities to use storage on the grid are growing due to the improvements in energy storage technologies, and flexible regulatory frameworks. Technological developments have made it possible to use batteries and other Energy Storage Systems (ESSs) for managing the operation of the power system. This book aims to illustrate the potential of energy storage systems in different applications of the modern power system considering recent advances and research trends in storage technologies. These areas are going to play a very significant role in future smart grid operations. This book discusses the various types of energy storage technologies and promotes the applications of ESSs in the performance improvement of modern power systems. Whether for the veteran engineer, new hire, or student, it is a must-have for any library.




The Handbook of Lithium-Ion Battery Pack Design


Book Description

The Handbook of Lithium-Ion Battery Pack Design: Chemistry, Components, Types and Terminology,?Second Edition provides a clear and concise explanation of EV and Li-ion batteries for readers that are new to the field. The second edition expands and updates all topics covered in the original book, adding more details to all existing chapters and including major updates to align with all of the rapid changes the industry has experienced over the past few years. This handbook offers a layman's explanation of the history of vehicle electrification and battery technology, describing the various terminology and acronyms and explaining how to do simple calculations that can be used in determining basic battery sizing, capacity, voltage, and energy. By the end of this book the reader will have a solid understanding of the terminology around Li-ion batteries and be able to undertake simple battery calculations. The book is immensely useful to beginning and experienced engineers alike who are moving into the battery field. Li-ion batteries are one of the most unique systems in automobiles today in that they combine multiple engineering disciplines, yet most engineering programs focus on only a single engineering field. This book provides the reader with a reference to the history, terminology and design criteria needed to understand the Li-ion battery and to successfully lay out a new battery concept. Whether you are an electrical engineer, a mechanical engineer or a chemist, this book will help you better appreciate the inter-relationships between the various battery engineering fields that are required to understand the battery as an Energy Storage System. It gives great insights for readers ranging from engineers to sales, marketing, management, leadership, investors, and government officials. - Adds a brief history of battery technology and its evolution to current technologies? - Expands and updates the chemistry to include the latest types - Discusses thermal runaway and cascading failure mitigation technologies? - Expands and updates the descriptions of the battery module and pack components and systems?? - Adds description of the manufacturing processes for cells, modules, and packs? - Introduces and discusses new topics such as battery-as-a-service, cell to pack and cell to chassis designs, and wireless BMS?




Battery Systems Engineering


Book Description

A complete all-in-one reference on the important interdisciplinary topic of Battery Systems Engineering Focusing on the interdisciplinary area of battery systems engineering, this book provides the background, models, solution techniques, and systems theory that are necessary for the development of advanced battery management systems. It covers the topic from the perspective of basic electrochemistry as well as systems engineering topics and provides a basis for battery modeling for system engineering of electric and hybrid electric vehicle platforms. This original approach gives a useful overview for systems engineers in chemical, mechanical, electrical, or aerospace engineering who are interested in learning more about batteries and how to use them effectively. Chemists, material scientists, and mathematical modelers can also benefit from this book by learning how their expertise affects battery management. Approaches a topic which has experienced phenomenal growth in recent years Topics covered include: Electrochemistry; Governing Equations; Discretization Methods; System Response and Battery Management Systems Include tables, illustrations, photographs, graphs, worked examples, homework problems, and references, to thoroughly illustrate key material Ideal for engineers working in the mechanical, electrical, and chemical fields as well as graduate students in these areas A valuable resource for Scientists and Engineers working in the battery or electric vehicle industries, Graduate students in mechanical engineering, electrical engineering, chemical engineering.




Advances in Battery Technologies for Electric Vehicles


Book Description

Advances in Battery Technologies for Electric Vehicles provides an in-depth look into the research being conducted on the development of more efficient batteries capable of long distance travel. The text contains an introductory section on the market for battery and hybrid electric vehicles, then thoroughly presents the latest on lithium-ion battery technology. Readers will find sections on battery pack design and management, a discussion of the infrastructure required for the creation of a battery powered transport network, and coverage of the issues involved with end-of-life management for these types of batteries. - Provides an in-depth look into new research on the development of more efficient, long distance travel batteries - Contains an introductory section on the market for battery and hybrid electric vehicles - Discusses battery pack design and management and the issues involved with end-of-life management for these types of batteries




Fundamentals and Applications of Lithium-ion Batteries in Electric Drive Vehicles


Book Description

A theoretical and technical guide to the electric vehicle lithium-ion battery management system Covers the timely topic of battery management systems for lithium batteries. After introducing the problem and basic background theory, it discusses battery modeling and state estimation. In addition to theoretical modeling it also contains practical information on charging and discharging control technology, cell equalisation and application to electric vehicles, and a discussion of the key technologies and research methods of the lithium-ion power battery management system. The author systematically expounds the theory knowledge included in the lithium-ion battery management systems and its practical application in electric vehicles, describing the theoretical connotation and practical application of the battery management systems. Selected graphics in the book are directly derived from the real vehicle tests. Through comparative analysis of the different system structures and different graphic symbols, related concepts are clear and the understanding of the battery management systems is enhanced. Contents include: key technologies and the difficulty point of vehicle power battery management system; lithium-ion battery performance modeling and simulation; the estimation theory and methods of the lithium-ion battery state of charge, state of energy, state of health and peak power; lithium-ion battery charge and discharge control technology; consistent evaluation and equalization techniques of the battery pack; battery management system design and application in electric vehicles. A theoretical and technical guide to the electric vehicle lithium-ion battery management system Using simulation technology, schematic diagrams and case studies, the basic concepts are described clearly and offer detailed analysis of battery charge and discharge control principles Equips the reader with the understanding and concept of the power battery, providing a clear cognition of the application and management of lithium ion batteries in electric vehicles Arms audiences with lots of case studies Essential reading for Researchers and professionals working in energy technologies, utility planners and system engineers.




Lithium Ion Batteries in Electric Drive Vehicles


Book Description

This research focuses on the technical issues that are critical to the adoption of high-energy-producing lithium Ion batteries. In addition to high energy density / high power density, this publication considers performance requirements that are necessary to assure lithium ion technology as the battery format of choice for electrified vehicles. Presentation of prime topics includes: • Long calendar life (greater than 10 years) • Sufficient cycle life • Reliable operation under hot and cold temperatures • Safe performance under extreme conditions • End-of-life recycling To achieve aggressive fuel economy standards, carmakers are developing technologies to reduce fuel consumption, including hybridization and electrification. Cost and affordability factors will be determined by these relevant technical issues which will provide for the successful implementation of lithium ion batteries for application in future generations of electrified vehicles.







Sustainable Transportation Program 2016 Annual Report


Book Description

Oak Ridge National Laboratory's (ORNL's) Sustainable Transportation Program (STP) works with government and industry to develop scientific knowledge and new technologies that accelerate the deployment of energy-efficient vehicles and intelligent, secure, and accessible transportation systems. Scientists are tackling complex challenges in transportation using comprehensive capabilities at ORNL's National Transportation Research Center and the laboratory's signature strengths in high-performance computing, neutron sciences, materials science, and advanced manufacturing. Research focuses on electrification, efficiency of combustion and emissions, data science and automated vehicles, and materials for future systems. Highlights from 2016 include: Electrification, Efficiency of combustion and emission controls, Data science and automated vehicles, and Materials for future systems. This annual report is a short summary and snapshot featuring several other accomplishments from the STP team. From motors that achieve higher power density without rare earth materials to thought leadership on combustion as a continuum to new technologies in multimaterial joining and vehicle cybersecurity, ORNL researchers are shaping the future of transportation. Related items: Transportation & Navigation publications can be found here: https://bookstore.gpo.gov/catalog/transportation-navigation Biofuels & Renewable Energy publications can be found here: https://bookstore.gpo.gov/catalog/biofuels-renewable-energy Energy & Fuels publications can be found here: https://bookstore.gpo.gov/catalog/energy-fuels Engineering publications can be found here: https://bookstore.gpo.gov/catalog/engineering